Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dissolution inhibitor resists

Positive-Tone Photoresists based on Dissolution Inhibition by Diazonaphthoquinones. The intrinsic limitations of bis-azide—cycHzed mbber resist systems led the semiconductor industry to shift to a class of imaging materials based on diazonaphthoquinone (DNQ) photosensitizers. Both the chemistry and the imaging mechanism of these resists (Fig. 10) differ in fundamental ways from those described thus far (23). The DNQ acts as a dissolution inhibitor for the matrix resin, a low molecular weight condensation product of formaldehyde and cresol isomers known as novolac (24). The phenoHc stmcture renders the novolac polymer weakly acidic, and readily soluble in aqueous alkaline solutions. In admixture with an appropriate DNQ the polymer s dissolution rate is sharply decreased. Photolysis causes the DNQ to undergo a multistep reaction sequence, ultimately forming a base-soluble carboxyHc acid which does not inhibit film dissolution. Immersion of a pattemwise-exposed film of the resist in an aqueous solution of hydroxide ion leads to rapid dissolution of the exposed areas and only very slow dissolution of unexposed regions. In contrast with crosslinking resists, the film solubiHty is controUed by chemical and polarity differences rather than molecular size. [Pg.118]

The solubHity properties of the PAG itself can play an important role in the overaH resist performance as weU (50). SolubHity differences between the neutral onium salt and the acidic photoproducts can be quite high and wHl affect the resist contrast. In fact onium salts can serve as dissolution inhibitors in novolac polymers, analogous to diazonaphthoquinones, even in the absence of any acid-sensitive chemical function (51). [Pg.124]

Positive resists have as the photoreactive component a dissolution inhibitor that is destroyed in the regions exposed to the light. The resist is developed in an aqueous solution, where the exposed region dissolves away. The resists do not swell as much in the aqueous developer, allowing higher resolution. [Pg.351]

While "conventional positive photoresists" are sensitive, high-resolution materials, they are essentially opaque to radiation below 300 nm. This has led researchers to examine alternate chemistry for deep-UV applications. Examples of deep-UV sensitive dissolution inhibitors include aliphatic diazoketones (61-64) and nitrobenzyl esters (65). Certain onium salts have also recently been shown to be effective inhibitors for phenolic resins (66). A novel e-beam sensitive dissolution inhibition resist was designed by Bowden, et al a (67) based on the use of a novolac resin with a poly(olefin sulfone) dissolution inhibitor. The aqueous, base-soluble novolac is rendered less soluble via addition of -10 wt % poly(2-methyl pentene-1 sulfone)(PMPS). Irradiation causes main chain scission of PMPS followed by depolymerization to volatile monomers (68). The dissolution inhibitor is thus effectively "vaporized", restoring solubility in aqueous base to the irradiated portions of the resist. Alternate resist systems based on this chemistry have also been reported (69,70). [Pg.11]

Contact exposure at 248 nm using 20 wt % dissolution inhibitor. Behaves as a negative resist. [Pg.170]

The incorporation of PDMSX into conventional novolac resins has produced potential bilevel resist materials. Adequate silicon contents necessary for O2 RIE resistance can be achieved without sacrificing aqueous TMAH solubility. Positive resist formulations using an o-cresol novolac-PDMSX (510 g/mole) copolymer with a diazonaphthoquinone dissolution inhibitor have demonstrated a resolution of coded 0.5 pm L/S patterns at a dose of 156 mJ/cm2 upon deep-UV irradiation. A 1 18 O2 etching selectivity versus hard-baked photoresist allows dry pattern transfer into the bilevel structure. [Pg.172]

The workhorse of the VLSI industry today is a composite novolac-diazonaphthoquinone photoresist that evolved from similar materials developed for the manufacture of photoplates used in the printing industry in the early 1900 s (23). The novolac matrix resin is a condensation polymer of a substituted phenol and formaldehyde that is rendered insoluble in aqueous base through addition of 10-20 wt% of a diazonaphthoquinone photoactive dissolution inhibitor (PAC). Upon irradiation, the PAC undergoes a Wolff rearrangement followed by hydrolysis to afford a base-soluble indene carboxylic acid. This reaction renders the exposed regions of the composite films soluble in aqueous base, and allows image formation. A schematic representation of the chemistry of this solution inhibition resist is shown in Figure 6. [Pg.140]

Interest in solution inhibition resist systems is not limited to photoresist technology. Systems that are sensitive to electron-beam irradiation have also been of active interest. While conventional positive photoresists may be used for e-beam applications (31,32), they exhibit poor sensitivity and alternatives are desirable. Bowden, et al, at AT T Bell Laboratories, developed a novel, novolac-poly(2-methyl-l-pentene sulfone) (PMPS) composite resist, NPR (Figure 9) (33,34). PMPS, which acts as a dissolution inhibitor for the novolac resin, undergoes spontaneous depolymerization upon irradiation (35). Subsequent vaporization facilitates aqueous base removal of the exposed regions. Resist systems based on this chemistry have also been reported by other workers (36,37). [Pg.140]

At the present time, most of the positive photoresists used in the manufacture of microcircuits consist of a low molecular weight phenolic resin and a photoactive dissolution inhibitor. This composite system is not readily soluble in aqueous base but becomes so upon irradiation with ultraviolet light. When this resist is exposed, the dissolution inhibitor, a diazoketone, undergoes a Wolff rearrangement followed by reaction with ambient water to produce a substituted indene carboxylic acid. This photoinduced transformation of the photoactive compound from a hydrophobic molecule to a hydrophillic carboxylic acid allows the resin to be rapidly dissolved by the developer. (L2,3)... [Pg.73]

Positive Photoresists. All positive photoresists used for conventional photolithography are two-component systems and operate on a mechanism that involves destruction of a dissolution inhibitor. These resists are formulated... [Pg.49]

Several attempts have been made to redesign the traditional two-component near-UV positive resist systems to make them compatible with the deep-UV. Recall that the major problems associated with deep-UV exposure of conventional resists are related to non-bleaching of the o-quinonediazide sensitizer on exposure because of photoproduct absorbance, and strong absorption of the novolac resin. Willson and coworkers34 attempted to solve this problem using dissolution inhibitors based on 5-diazo Meldrums acid, which undergoes photochemical decomposition as follows ... [Pg.59]

Apart from multi-level layer resist systems, conventional positive-tone resists can be classified into two categories one-component and two-component systems. Classical examples of the former systems are polyfmethyl methacrylate), and poly (butene-1-sulfone) (2,3). Typical examples of the latter system are AZ-type photoresists, which are mixtures of cresol-formaldehyde-Novolak resins and a photoactive compound acting as a dissolution inhibitor... [Pg.339]

The structural variations of Novolak resins also influence how well they mix or form solid solutions with a dissolution inhibitor when resist films are cast onto substrates. This is a crucial problem for resist formulation. Usually, cresol-formaldehyde Novolak resins mix well with photoactive compounds like a... [Pg.341]

For further enhancement of electron beam sensitivity, the chlorinated Novolak resin was studied using poly (2-methyl-1-pentene sulfone) as a dissolution inhibitor. The chlorinated Novolak resin mixed well with the polysulfone, and there was no phase separation observed when the films were spin-coated. With 13 wt% of the polysulfone, the chlorinated Novolak resist cast from a cellosolve acetate solution yielded fully developed images with R/Ra = 9.2 after exposure to 2 / 2. It gave fully developed images with R/R0 = 3.2 at a dose of 1 / 2, as shown in Figure 3. There are some problems with this resist system some cracking of the developed resist images... [Pg.345]

Figure 23 lists representative acid-labile protecting groups that have been incorporated in positive-tone CA resist systems. These groups can be pendent to the matrix polymer chain, can be attached to a monomeric or polymeric additive that acts as a dissolution inhibitor (64—66), or can even be appended to the PAG structure (67). The kinetics of acid-catalyzed deprotection vary significantly with structure. In particular, the activation energy,... [Pg.126]

Many modifications of this basic chemistry have been explored to tailor these resists to deep-UV radiation. For example, changes have been made in the sensitizer so that it bleaches in this wavelength region. Early work in this area was performed on diazo-Meldrum s acid (54) (see structure). This compound functioned as a deep-UV-bleachable dissolution inhibitor however, it was somewhat volatile and, consequently, could be depleted via evaporation during soft bake. More-recent studies have therefore focused on less-volatile sensitizers incorporating heteroatom substitution (55) and on increases in molecular weight (56). [Pg.351]

Several groups have investigated three-component systems encompassing both chemical amplification and dissolution inhibition. As stated earlier, Smith and Bonham (63) reported resist materials composed of a binder resin (novolac), a nonpolymeric compound containing acid-labile functional groups such as acetals, and a trihalomethyl-substituted 5-triazine acid photogenerator. The acid-labile compound acts as a novolac dissolution inhibitor in a manner analogous to the action of DNQ in conventional positive resists. However, in this case, the inhibitor is not photochemically active. Instead,... [Pg.353]

Other three-component systems based on this chemistry have made use of the following acid-labile dissolution inhibitors polyphthalaldehyde (80), ketals of (J-ketoesters (81), and compounds containing C-O-Si bonds (82). Similar resists have also been used with other radiation sources these will be discussed in subsequent sections. [Pg.354]

One final example of the application of onium salt photochemistry in positive resist materials should be mentioned, because it does not include any postexposure acid-catalyzed processes and therefore does not encompass the principle of chemical amplification (79). Interestingly, Newman (79) has determined that onium salts themselves can inhibit the dissolution of novolac in aqueous base and that irradiation of such an onium salt-novolac resist restores the solubility of the resin in developer and leads to a positive-tone image. In this application, the onium salt behaves like diazonaphthoquinone in a typical positive resist. Recently, Ito (80) has reported also the use of onium salts as novolac dissolution inhibitors. [Pg.354]

The performance of the resist is controlled through the chemistries associated with each component. Using one 193-nanometer resist concept as an example, each component—the matrix resin, the dissolution inhibitor, and the photoacid generator—must be designed to be compatible with each other, but equally importantly, they must be compatible with the overall device fabrication process. Table 3.1 lists a number of materials requirements and the associated desired molecular characteristics. [Pg.30]

However, the photochemistry itself does not make a relief image. Rather it is used to modify the solubility of the polymeric binder. The diazoquinone compounds used in resists are referred to as dissolution inhibitors or photoactive components (PAC s). The addition of a diazoquinone molecule dramatically inhibits the dissolution rate of a thin film of a novolac resin. Upon exposure, the dissolution rate of the novolac based resist is considerably faster than the rate for the novolac alone. The accelerated dissolution rate may be caused by formation of acid eind its subsequent ionization during development or by enhauiced diffusion of the developer into the coating because of changes caused by the formation and fate of the nitrogen (2). [Pg.238]

Most resists are designed for exposure at wavelengths longer than the 248.4 nm radiation provided by a KrF laser source. Wolf and coworkers O) have found that the choice of a positive resist for use at thTis wavelength is limited. They evaluated a number of positive resists. Only Microposit 2415, and its newer analog, Microposit 2400-17, were compatible with the anticipated exposure time of 0.5 to 1.0 seconds for resist sensitivity of 100 to 200 mj/cm needed with the new exposure tool developed by Pol and coworkers. (O The resist consists of three components a resin, a photoactive compound or PAG (which acts as a dissolution inhibitor), and a solvent. Upon exposure, the PAC is destroyed, and this allows the resist film to dissolve in the aqueous basic developer. [Pg.292]

The basic resist systems have remained essentially the same the positive photoresist composed of a novolac resin and a photoactive substituted diazonaphthoquinone dissolution inhibitor is the resist of choice. The current tools and resists will be able to print features as small as 0.5-0.7 (xm in a production environment. These systems are almost certainly the last generation of conventional-wavelength photolithographic systems. [Pg.267]

Poly (2-methyl-1-pentene sulfone) may be used as a dissolution inhibitor to effect e-beam sensitivity (38). Trimethylsilylalkoxyphenol is another monomer that has been used in the preparation of oxygen-etching-resistant no-volacs for resist applications (39). For all of the novolac-based systems studied to date, the hydrophobic nature of the silicon moiety limits the incorporation of silicon to —10 wt %. However, this level is sufficient to allow use of these resins as oxygen RIE masks. [Pg.276]


See other pages where Dissolution inhibitor resists is mentioned: [Pg.126]    [Pg.11]    [Pg.20]    [Pg.28]    [Pg.86]    [Pg.12]    [Pg.121]    [Pg.565]    [Pg.53]    [Pg.56]    [Pg.76]    [Pg.358]    [Pg.348]    [Pg.354]    [Pg.355]    [Pg.30]    [Pg.937]    [Pg.250]    [Pg.277]   
See also in sourсe #XX -- [ Pg.119 , Pg.120 , Pg.121 , Pg.122 , Pg.123 , Pg.124 , Pg.125 , Pg.126 , Pg.127 , Pg.128 , Pg.129 , Pg.130 ]




SEARCH



Dissolution-resistant

© 2024 chempedia.info