Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diazonaphthoquinone, dissolution inhibitor

Tetramethylammonium hydroxide, TMAH, (Fluka Chemicals) was diluted with distilled water from a 25 wt % aqueous solution. In all cases the diazonaphthoquinone dissolution inhibitor used was Fairmont Positive Sensitizer 1009 (Fairmont Chemical Company). The syntheses of the PDMSX oligomers and novolac-PDMSX block copolymers have already been reported (11). The dimethylamine terminated poly(dimethyl siloxane), =510 g/mole (Petrarch), was used as the PDMSX component or to prepare higher molecular weight analogs. [Pg.159]

Optimization of the deep-UV exposure and aqueous TMAH development steps for all three parent phenolic resins formulate with the diazonaphthoquinone dissolution inhibitor resulted in the resolution of positive tone 0.75 pm L/S patterns at a dose of 156, 195 and 118 mJ/cm2 for the o-cresol, 2-methyl resorcinol and PHS materials, respectively (Table V). The copolymers prepared with a 4400 g/mole PDMSX resulted in TMAH soluble films at >11 wt % silicon however, the feature quality was extremely poor in each case. Figure 6 shows an SEM photomicrograph of a 2-methyl resorcinol-PDMSX copolymer using (a) 20 and (b)... [Pg.170]

Figure 6 Scanning electron microscope photograph of coded 0.75 pm line-space images obtained with the 2-methyl resorcinol-PDMSX copolymer ( = 4400 g/mole) containing (a) 20 wt % and (b) 30 wt % diazonaphthoquinone dissolution inhibitor. Figure 6 Scanning electron microscope photograph of coded 0.75 pm line-space images obtained with the 2-methyl resorcinol-PDMSX copolymer (<Mn > = 4400 g/mole) containing (a) 20 wt % and (b) 30 wt % diazonaphthoquinone dissolution inhibitor.
The incorporation of PDMSX into conventional novolac resins has produced potential bilevel resist materials. Adequate silicon contents necessary for O2 RIE resistance can be achieved without sacrificing aqueous TMAH solubility. Positive resist formulations using an o-cresol novolac-PDMSX (510 g/mole) copolymer with a diazonaphthoquinone dissolution inhibitor have demonstrated a resolution of coded 0.5 pm L/S patterns at a dose of 156 mJ/cm2 upon deep-UV irradiation. A 1 18 O2 etching selectivity versus hard-baked photoresist allows dry pattern transfer into the bilevel structure. [Pg.172]

The basic resist systems have remained essentially the same the positive photoresist composed of a novolac resin and a photoactive substituted diazonaphthoquinone dissolution inhibitor is the resist of choice. The current tools and resists will be able to print features as small as 0.5-0.7 (xm in a production environment. These systems are almost certainly the last generation of conventional-wavelength photolithographic systems. [Pg.267]

Positive-Tone Photoresists based on Dissolution Inhibition by Diazonaphthoquinones. The intrinsic limitations of bis-azide—cycHzed mbber resist systems led the semiconductor industry to shift to a class of imaging materials based on diazonaphthoquinone (DNQ) photosensitizers. Both the chemistry and the imaging mechanism of these resists (Fig. 10) differ in fundamental ways from those described thus far (23). The DNQ acts as a dissolution inhibitor for the matrix resin, a low molecular weight condensation product of formaldehyde and cresol isomers known as novolac (24). The phenoHc stmcture renders the novolac polymer weakly acidic, and readily soluble in aqueous alkaline solutions. In admixture with an appropriate DNQ the polymer s dissolution rate is sharply decreased. Photolysis causes the DNQ to undergo a multistep reaction sequence, ultimately forming a base-soluble carboxyHc acid which does not inhibit film dissolution. Immersion of a pattemwise-exposed film of the resist in an aqueous solution of hydroxide ion leads to rapid dissolution of the exposed areas and only very slow dissolution of unexposed regions. In contrast with crosslinking resists, the film solubiHty is controUed by chemical and polarity differences rather than molecular size. [Pg.118]

The solubHity properties of the PAG itself can play an important role in the overaH resist performance as weU (50). SolubHity differences between the neutral onium salt and the acidic photoproducts can be quite high and wHl affect the resist contrast. In fact onium salts can serve as dissolution inhibitors in novolac polymers, analogous to diazonaphthoquinones, even in the absence of any acid-sensitive chemical function (51). [Pg.124]

The deep UV induced reactions appear to be slightly different from X-ray and EB induced reactions. Deep UV exposure in air can induce an increase in solubility of SPP, indicating that indenecar-boxylic acid is produced. IR spectra of SPP exposed to deep UV are shown in Figure 11. In this case, we used a mono-functional dissolution inhibitor, tert-amylphenol diazonaphthoquinone sulfonyl ester, instead of a multi-functional sensitizer, DNQ, because the IR spectrum of a mono-functional ester is easier to interpret than that of DNQ. The SPP containing this mono-functional ester also exhibits an image reversal reaction with almost the same characteristics as the SPP with DNQ. [Pg.185]

The workhorse of the VLSI industry today is a composite novolac-diazonaphthoquinone photoresist that evolved from similar materials developed for the manufacture of photoplates used in the printing industry in the early 1900 s (23). The novolac matrix resin is a condensation polymer of a substituted phenol and formaldehyde that is rendered insoluble in aqueous base through addition of 10-20 wt% of a diazonaphthoquinone photoactive dissolution inhibitor (PAC). Upon irradiation, the PAC undergoes a Wolff rearrangement followed by hydrolysis to afford a base-soluble indene carboxylic acid. This reaction renders the exposed regions of the composite films soluble in aqueous base, and allows image formation. A schematic representation of the chemistry of this solution inhibition resist is shown in Figure 6. [Pg.140]

One final example of the application of onium salt photochemistry in positive resist materials should be mentioned, because it does not include any postexposure acid-catalyzed processes and therefore does not encompass the principle of chemical amplification (79). Interestingly, Newman (79) has determined that onium salts themselves can inhibit the dissolution of novolac in aqueous base and that irradiation of such an onium salt-novolac resist restores the solubility of the resin in developer and leads to a positive-tone image. In this application, the onium salt behaves like diazonaphthoquinone in a typical positive resist. Recently, Ito (80) has reported also the use of onium salts as novolac dissolution inhibitors. [Pg.354]

Conventional positive photoresists consist of a matrix resin and a photoactive compound. The matrix resin is a cresol-formaldehyde novolac resin (structure 3.1) that is soluble in aqueous base solution, and the photoactive compound is a substituted diazonaphthoquinone (structure 3.2) that functions as a dissolution inhibitor for the matrix resin. As outlined in Scheme 3.1 (20), the photoactive compound undergoes a structural transformation upon UV radiation, known as WolflFrearrangement, foUowed by reaction with water... [Pg.119]

In addition to the oligomeric and polymeric dissolution inhibitors discussed earlier, small molecules bearing acid labile groups have been employed in 157 nm resist formulations [295, 312]. Representative examples are shown in Fig. 98. Some are better than others in dissolution inhibition of a copolymer of NBHFA and NBTBE (92 8). What is interesting is that a diazonaphthoquinone PAC developed for mid UV application (Fig. 99) [313] is surprisingly transparent and can inhibit the dissolution of PNBHFA even better than the small acid-labile dissolution inhibitors in Fig. 98 [312]. In contrast, the dissolution of PSTHFA cannot be efficiently inhibited either with diazonaphthoquinone, the small acid-labile lipophilic compounds in Fig. 98, or the carbon monoxide copolymer (Fig. 94) [312]. [Pg.133]

For resists designed for applications in the near-UV region, good absorption at 365 nm (i-line) and at 405 nm and 436 nra (g-line) is required, and aromatic substituents present the best option. The most commonly used ballast compound is polyhydroxybenzophenone, where one to three (or even four) hydroxyl groups can be esterified with diazoquinone sulfonyl-chloride, as discussed above. A popularly used dissolution inhibitor is a substituted 2,3,4-trihydroxy benzophenone of stmcture (in), " where DQ stands here for diazonaphthoquinone. One other popular diazoquinone derivative found in commercial resists is the sulfonyl ester of cumylphenol. Similar materials such as shown in structure (IV) have also been employed in resist applications. ... [Pg.293]

The addition of diazonaphthoquinones to novolac films leads to a reduction in the dissolution rate of the polymer film in aqueous base relative to the dissolution rate of the pure polymer. This difference in rate can be as large as several orders of magnitude. Diazonaphthoquinone is therefore termed a dissolution inhibitor due to its ability to retard the dissolution rate of the novolac film. As shown... [Pg.3322]

The addition of diazonapthoquinones to novolac films leads to a reduction in the dissolution rate of the polymer film in aqueous base relative to the dissolution rate of the pure polymer. This difference in rate can be as large as several orders of magnitude. Diazonaphthoquinone is therefore termed a dissolution inhibitor due to its ability to retard the dissolution rate of the novolac film. As shown above, DNQ undergoes a series of reactions upon exposure to radiation to form a carboxylic acid product. This carboxylic acid, unlike the hydrophobic DNQ, is soluble in aqueous base and its presence in the polymer film does not retard the dissolution rate in aqueous base. In fact, the presence of the carboxylic acid often serves to increase the dissolution rate of the novolac several orders of magnitude relative to the pure novolac polymer. It is this change in the dissolution rate of the novolac film due to the reaction of... [Pg.2075]

Thick Resist Lithography, Fig. 3 Schematic picture of the mechanism by which DNQ-novolac resists function. Addition of DNQ inhibitor (/) to novolac polymer (AO results in a dramatic reduction in the dissolution rate of the polymer in aqueous alkaline developer solutions. Exposure of the DNQ-novolac resist mixture causes a chemical reaction converts the diazonaphthoquinone to... [Pg.3322]


See other pages where Diazonaphthoquinone, dissolution inhibitor is mentioned: [Pg.277]    [Pg.134]    [Pg.277]    [Pg.134]    [Pg.282]    [Pg.11]    [Pg.114]    [Pg.358]    [Pg.937]    [Pg.118]    [Pg.461]    [Pg.17]    [Pg.908]    [Pg.483]    [Pg.46]    [Pg.237]    [Pg.198]    [Pg.230]    [Pg.1038]    [Pg.117]    [Pg.46]   


SEARCH



Diazonaphthoquinone

Diazonaphthoquinones

© 2024 chempedia.info