Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Malonic acid, Dimethyl

Voerman had contended that the anhydrides obtained from all dibasic acids of this series are monomeric. See also Staudinger and Ott on the polymeric anhydride of dimethyl malonic acid. [Pg.16]

C9H16O4 dimethyl-malonic acid diethyl ester 1619-62-1... [Pg.507]

Hydrochloric acid [7647-01-0], which is formed as by-product from unreacted chloroacetic acid, is fed into an absorption column. After the addition of acid and alcohol is complete, the mixture is heated at reflux for 6—8 h, whereby the intermediate malonic acid ester monoamide is hydroly2ed to a dialkyl malonate. The pure ester is obtained from the mixture of cmde esters by extraction with ben2ene [71-43-2], toluene [108-88-3], or xylene [1330-20-7]. The organic phase is washed with dilute sodium hydroxide [1310-73-2] to remove small amounts of the monoester. The diester is then separated from solvent by distillation at atmospheric pressure, and the malonic ester obtained by redistillation under vacuum as a colorless Hquid with a minimum assay of 99%. The aqueous phase contains considerable amounts of mineral acid and salts and must be treated before being fed to the waste treatment plant. The process is suitable for both the dimethyl and diethyl esters. The yield based on sodium chloroacetate is 75—85%. Various low molecular mass hydrocarbons, some of them partially chlorinated, are formed as by-products. Although a relatively simple plant is sufficient for the reaction itself, a si2eable investment is required for treatment of the wastewater and exhaust gas. [Pg.467]

Malonic acid dimethyl ester, 2-(l-thienyl)-X-ray, 4, 724 (78CC83)... [Pg.34]

Meldrum s acid, pK 7.4, is exceptionally acidic in comparison to an acyclic analog such as dimethyl malonate, pK 15.9. For comparison, 5,5-dimethyl-1,3-cyclohexane-dione is only moderately more acidic than 2,4-pentanedione (11.2 versus 13.43). The pK values are those for DMSO solution. It is also found that the enhanced acidity of Meldrum s acid derivatives decreases as the ring size is increased. Analyze factors that could contribute to the enhanced acidity of Meldrum s acid. [Pg.443]

The addition of nucleophiles to cyclic fluoroolefins has been reviewed by Park et al. [2 ]. The reaction with alcohols proceeds by addition-elimination to yield the cyclic vinylic ether, as illustrated by tlie reaction of l,2-dichloro-3,3-di-fluorocyclopropene Further reaction results in cyclopropane ring opening at the bond opposite the difluoromethylene carbon to give preferentially the methyl and ortho esters of (Z)-3-chloro-2-fluoroacrylic acid and a small amount of dimethyl malonate [29] (equation 8). [Pg.731]

Meerwein s Ester (9) Dimethyl malonate (13.2 g, 0.4 mole) and 6 g of 40 % aqueous formaldehyde solution are mixed in an Erlenmeyer flask and cooled to 0° in an ice bath. To the mixture is added 0.3 g of piperidine and enough ethanol to produce a homogeneous solution. The solution is allowed to stand at 0° for 12 hours, at room temperature for 24 hours, and at 35 0° for 48 hours. The reaction product is washed with water (50 ml) followed by dilute sulfuric acid, then dried (sodium sulfate). Unreacted malonic ester is distilled off under vacuum leaving a residue of about 12.5 g, which contains methylenemalonic ester, methylenebismalonic ester, and hexacarbomethoxypentane. [Pg.92]

This ester (70 g) and diethyl carbonate (250 mg) were stirred at 90°C to 100°C while a solution of sodium ethoxide [from sodium (7.8 g) and ethanol (1 54 ml)] was added over 1 hr. During addition, ethanol was allowed to distill and after addition distillation was continued until the column heat temperature reached 124°C. After cooling the solution to 90°C, dimethyl sulfate (33 ml) was followed by a further 85 ml of diethyl carbonate. This solution was stirred and refluxed for 1 hr and then, when Ice cool, was diluted with water and acetic acid (10 ml). The malonate was isolated in ether and fractionally distilled to yield a fraction boiling at 148°C to 153°C/0.075 mm, identified as the alpha-methyl malonate. This was hydrolyzed by refluxing for 1 hr at 2.5N sodium hydroxide (350 ml) and alcohol (175 ml), excess alcohol was distilled and the residual suspension of sodium salt was acidified with hydrochloric acid to give a precipitate of the alpha-methyl malonic acid. This was decarboxylated by heating at 180°C to 200°Cfor 30 minutes and recrystallized from petroleum ether (BP 80°C to 100°C) to give 2-(2-fluoro-4-biphenylyl)propionic acid, MP 110°C to 111°C. [Pg.690]

Similar results are observed in the conjugative addition of CH-acidic methylene compounds with the metal derivatives of 2-nitro-5,10,15.20-tetraphenylporphyrin (6). The nickel porphyrin 6 (M = Ni) yields with an excess of dimethyl malonate the cyclopropane derivative 7 whereas the copper porphyrin 6 (M — Cu) forms with two equivalents of malononitrile the bisadduct 8.111... [Pg.608]

The application of 3-aminopropyl phosphine (3) [41,46] as a building block for incorporation into -COOH functionalized frameworks provides an excellent example of the utility of preformed primary phosphine frameworks (Scheme 8) [46]. The reactions involved Michael addition of ferf-butyl acrylate to malonic acid dimethyl ester to produce the intermediate adduct, 2-methoxycarbonyl-pentanedioc acid 5-ferf-butyl ester 1-methyl ester, which upon treatment with trifluro-acetic acid (TFA) produced the corresponding diester acid,2-methoxy-carbonyl-pentanedioic acid 1-methyl ester, in near quantitative yield. It is remarkable to note that the reaction of NH2(CH2)3PH2 (3) with the diester acid is highly selective as the -COOH group remained unattacked whereas the reaction occurred smoothly and selectively at the -COOMe groups to pro-... [Pg.128]

With the A-ring unit readily available, we directed our attention to the formation of the B-ring. At first, we duplicated the five step scheme reported in Sih s strigol synthesis involving 1) esterification of the acid 14, 2) allylic bromination with N-bromo 8 ucc i n imi d e (NBS) to 15, 3) condensation with the sodium salt of dimethyl malonate to 16, 4) alkylation with methyl bromoacetate to 17, and 5) acid catalyzed hydrolysis and decarboxylation to the acid 18. [Pg.440]

Another photochemically induced domino process consisting of three steps was employed for the formation of 1,2-disubstituted cyclopentanes 5-39, as described by Tietze and coworkers. Irradiation of a mixture of 5-36, dimethyl malonate and catalytic amounts of the Lewis acid Me2AlCl in a Pyrex flask caused a Norish Type I cleavage of 5-36, followed by an intramolecular hydrogen shift to give the acyclic... [Pg.342]

The tandem-Knoevenagel-ene reaction is a powerful tool to synthesize five-and six-membered carbocycles.2 5 The process is exemplified by the diastereoselective synthesis of 4a. Compound 4a has been obtained In both enantiomeric forms and as a racemate according to the procedure described here. The sequence includes the Knoevenagel reaction of citronellal, 1, and dimethyl malonate, 2, followed by the intramolecular ene cyclization of the chiral 1,7-diene 3 to yield the trans 1,2-disubstituted products 4a and 4b. Whereas the thermal cyclization of 3 at 160°C provides 4a and 4 b in a ratio of only 89.7 10.3, the Lewis acid... [Pg.87]

Dimethyl malonate Malonic add, dimethyl ester (8) Propanedioic acid, dimethyl ester (9) (108-59-8)... [Pg.88]

One of the most recent developments in the field of Ni-catalyzed reactions of alkyl halides with organozinc derivatives is a study of Terao et al.411 They reported the use of three additives in the couplings 1,3-butadiene, N,N-bis(penta-2,4-dienyl)benzylamine 308a, and 2,2-bis(penta-2,4-dienyl)malonic acid dimethyl ester 308b. Addition of tetraene 308b to the reaction mixtures significantly increased the product yields (Scheme 157). The remarkable effect of these additives was explained by the formation of the bis-7r-allylic complex 309 as the key intermediate (Scheme 158). [Pg.407]

A similar pathway involving a microwave-driven molybdenum-catalyzed asymmetric allylic alkylation as the key step was elaborated by Moberg and coworkers for the preparation of the muscle relaxant (R)-baclofen (Scheme 6.52) [108]. The racemic form of baclofen is used as a muscle relaxant (antispasmodic) lipophilic derivative of y-aminobutyric acid (GABA). Pharmacological studies have shown that the (R)-enantiomer is the therapeutically useful agonist of the GABAb receptor. Asymmetric alkylation of the allylic carbonate precursor with dimethyl malonate afforded... [Pg.142]

Butanoic acid, methyl ester Malonic acid, dimethyl ester 1,1-Dimethylpropanoic acid, 1,1-dimethylester... [Pg.368]

Saalfrank, Hoffmann and co-workers performed a number of reactions with tetra-alkoxyallenes such as 196 (Scheme 8.47) [1, 41, 105, 114—116] and demonstrated that this class of donor-substituted allenes can serve as a 1,3-dianion equivalent of malonic acid. Treatment of 196 with cyclopropyldicarboxylic acid dichloride 197 produces 2,4-dioxo-3,4-dihydro-2H-pyran 198 through release of two molecules of ethyl chloride [115]. Similarily, the reaction of this allene 196 with oxalyl chloride gives 3-chloromalonic acid anhydride derivative 199. This intermediate is a reactive dieno-phile which accepts 2,3-dimethyl-l,3-butadiene in a subsequent [4+2] cycloaddition to afford cycloadduct 200 in good yield [116]. [Pg.458]

Consider now what happens when the two carboxyl groups react to form a small ring, for example the anhydride. The angle between the carboxyl carbons must be reduced much further, perhaps to around 90°, in the product and in the transition state leading to it. Compared with malonic acid itself, this process has less far to go in the dimethyl compound because the two alkyl groups have already forced the carboxyls part of the way towards each other. The observed diminution in bond angle caused by the introduction of the two alkyl substituents thus specifically favours the formation of the small ring. [Pg.209]

Dimethylformamide dimethyl acetal was reacted with malonic acid derivatives at room temperature for 6 hr (84TL3743) or at 110°C for 1-2 hr (780PP67) to afford /V.N-dimethylaminomethylene derivatives (331) in 75-96% yields. [Pg.93]

B. 3-Cyclopentene-1 -carboxylic acid. A 250-mL, one-necked, round-bottomed flask is charged with 35.8 g of 3-cyclopentene-1,1-dicarboxylic acid and then fitted with a reflux condenser capped with a rubber septum and connected to a Nujol-filled bubbler by means of a syringe needle. The contents of the flask are heated in an oil bath at 170-175°C until carbon dioxide evolution is complete (ca. 2 hr) and then allowed to cool to room temperature. The resulting oil is transferred to a 50-mL flask and vacuum distilled without fractionation to provide 23.0 g (89% or 82% overall from dimethyl malonate) of 3-cyclopentene-1-carboxylic acid as a clear, colorless oil, bp 88°C (2 mm) (Note 7). [Pg.99]

The preparation described here of 3-cyclopentene-1-carboxylic acid from dimethyl malonate and cis-1,4-dichloro-2-butene is an optimized version of a method reported earlier3 for obtaining this often used and versatile building block.6 The procedure is simple and efficient and requires only standard laboratory equipment. 3-Cyclopentene-1-carboxylic acid has previously been prepared through reaction of diethyl malonate with cis-1,4-dichloro(or dibromo)-2-butene in the presence of ethanolic sodium ethoxide, followed by hydrolysis of the isolated diethyl 3-cyclopentene-1,1-dicarboxylate intermediate, fractional recrystallization of the resultant diacid to remove the unwanted vinylcyclopropyl isomer, and finally decarboxylation.2>7 Alternatively, this compound can be obtained from the vinylcyclopropyl isomer (prepared from diethyl malonate and trans-1,4-dichloro-2-butene)8 or from cyclopentadiene9 or cyclopentene.10 In comparison with the present procedure, however, all these methods suffer from poor selectivity, low yields, length, or need of special equipment or reagents, if not a combination of these drawbacks. [Pg.100]

Volume 75 concludes with six procedures for the preparation of valuable building blocks. The first, 6,7-DIHYDROCYCLOPENTA-l,3-DIOXIN-5(4H)-ONE, serves as an effective /3-keto vinyl cation equivalent when subjected to reductive and alkylative 1,3-carbonyl transpositions. 3-CYCLOPENTENE-l-CARBOXYLIC ACID, the second procedure in this series, is prepared via the reaction of dimethyl malonate and cis-l,4-dichloro-2-butene, followed by hydrolysis and decarboxylation. The use of tetrahaloarenes as diaryne equivalents for the potential construction of molecular belts, collars, and strips is demonstrated with the preparation of anti- and syn-l,4,5,8-TETRAHYDROANTHRACENE 1,4 5,8-DIEPOXIDES. Also of potential interest to the organic materials community is 8,8-DICYANOHEPTAFULVENE, prepared by the condensation of cycloheptatrienylium tetrafluoroborate with bromomalononitrile. The preparation of 2-PHENYL-l-PYRROLINE, an important heterocycle for the synthesis of a variety of alkaloids and pyrroloisoquinoline antidepressants, illustrates the utility of the inexpensive N-vinylpyrrolidin-2-one as an effective 3-aminopropyl carbanion equivalent. The final preparation in Volume 75, cis-4a(S), 8a(R)-PERHYDRO-6(2H)-ISOQUINOLINONES, il lustrates the conversion of quinine via oxidative degradation to meroquinene esters that are subsequently cyclized to N-acylated cis-perhydroisoquinolones and as such represent attractive building blocks now readily available in the pool of chiral substrates. [Pg.140]

Anions of CH-acidic compounds (dimethyl malonate and nitromethane) can he linked to aromatics (benzene, toluene, naphthalene, and 1,4-dimethoxybenzene) when they are coelectrolyzed in methanol-sodium methoxide [167]. [Pg.154]

Like the electrohydrodimerization and electrohydrocyclizahon reactions, this process also requires the consumphon of two electrons and two protons. It has been shown to occur via a sequence consisting of electron transfer followed by a ratedetermining protonation of the resulting radical anion, addihon of a second electron to generate a carbanion, cyclization of the carbanion onto the carbonyl acceptor unit and the addition of the second proton [16]. Carbon acids like dimethyl malonate and malononitrile are often used as a proton source. The course of this and other... [Pg.317]

Tan and co-workers reported the Michael reactions of di-thiomalonates and P-keto-thioesters to a range of acceptors, including maleimides, cyclic enones, furanones and acyclic dioxobutenes [129]. Unlike dimethyl malonate, additions with acidic thioesters proceeded in higher yields, and overall better enantioselectivities (Scheme 74). [Pg.192]


See other pages where Malonic acid, Dimethyl is mentioned: [Pg.239]    [Pg.668]    [Pg.239]    [Pg.668]    [Pg.465]    [Pg.468]    [Pg.155]    [Pg.226]    [Pg.1451]    [Pg.58]    [Pg.1059]    [Pg.440]    [Pg.85]    [Pg.438]    [Pg.106]    [Pg.193]    [Pg.121]    [Pg.245]    [Pg.398]   
See also in sourсe #XX -- [ Pg.258 ]




SEARCH



Dimethyl 2 malonates

Malonates, acidity

Malonic acid

Malonic acid / Malonate

Malonic acid acidity

Malonic acid acids

Malonic dimethyl

© 2024 chempedia.info