Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ferf-Butyl acrylate

The application of 3-aminopropyl phosphine (3) [41,46] as a building block for incorporation into -COOH functionalized frameworks provides an excellent example of the utility of preformed primary phosphine frameworks (Scheme 8) [46]. The reactions involved Michael addition of ferf-butyl acrylate to malonic acid dimethyl ester to produce the intermediate adduct, 2-methoxycarbonyl-pentanedioc acid 5-ferf-butyl ester 1-methyl ester, which upon treatment with trifluro-acetic acid (TFA) produced the corresponding diester acid,2-methoxy-carbonyl-pentanedioic acid 1-methyl ester, in near quantitative yield. It is remarkable to note that the reaction of NH2(CH2)3PH2 (3) with the diester acid is highly selective as the -COOH group remained unattacked whereas the reaction occurred smoothly and selectively at the -COOMe groups to pro-... [Pg.128]

ATRP and grafting from methods led to the synthesis of poly(styrene-g-tert-butyl acrylate)-fr-poly(ethylene-co-butylene)-fr-poly(styrene-g-ferf-butyl acrylate) block-graft copolymer [203]. ATRP initiating sites were produced along the PS blocks by chloromethylation as shown in Scheme 112. These sites then served to polymerize the ferf-butyl acrylate. The poly(ferf-butyl acrylate) grafts were hydrolyzed to result in the corresponding poly(acrylic... [Pg.127]

The use of appropriate functionalized oligomers is a key to the success of this synthesis. The necessary functionalized oligomers were prepared by polymerization of ferf-butyl acrylate (n = ca. 120) with a functional AIBN initiator (Eq. 1). Since... [Pg.7]

In this review, synthesis of block copolymer brushes will be Hmited to the grafting-from method. Hussemann and coworkers [35] were one of the first groups to report copolymer brushes. They prepared the brushes on siUcate substrates using surface-initiated TEMPO-mediated radical polymerization. However, the copolymer brushes were not diblock copolymer brushes in a strict definition. The first block was PS, while the second block was a 1 1 random copolymer of styrene/MMA. Another early report was that of Maty-jaszewski and coworkers [36] who reported the synthesis of poly(styrene-h-ferf-butyl acrylate) brushes by atom transfer radical polymerization (ATRP). [Pg.129]

NMP is as successful as RAFT polymerization for the construction of block copolymers. A small library of block copolymers comprised of poly(styrene) (PSt) and poly(ferf-butyl acrylate) (FYBA) was designed and the schematic representation of the reaction is depicted in Scheme 10 [49]. Prior to the block copolymerization, the optimization reactions for the homopolymerization of St and f-BA were performed as discussed in this chapter (e.g., see Sect. 2.1.2). Based on these results,... [Pg.45]

Tsitsilianis et al. [14] also reached the conclusion, from size exclusion chromatography measurements, that AnBn type copolymers, where A is PS and B is poly(ferf-butyl acrylate), are more expanded than the corresponding homostars, due to the increased density of two different kinds of segments which leads... [Pg.105]

Recently, Muller et al. studied block and graft copolymers poly(n-butyl acrylate)-Wocfc/gra/f-poly(acrylic acid), PnBA-h/g-PAA [136]. The non-polar block/backbone has a low glass transition temperature, thus dynamic micelles were expected the ionic block/side-chains are weak anionic polyelectrolytes, thus a strong dependence of micellization on pH could be expected. The graft copolymers were synthesized by ATRP copolymerization of poly(-ferf-butyl acrylate) macromonomers with n-butyl acrylate, followed by hydrolysis of the terf-butyl acrylate side-chains to PAA [137]. The length of the PAA side chains was varied from 20 to 85 monomer units and their number from 1.5 to 10, whereas the length of the backbone was kept at ca. 130 units. [Pg.204]

Copolymers of poly(methyl methacrylate) and poly(ferf-butyl acrylate)... [Pg.169]

The composition of the PAA-g-PS graft copolymer reaction product and its purification, especially as far as the removal of unreacted PS-MA macromonomer by silica column chromatography is concerned, and the successful selective cleavage of the ferf-butyl ester under acidic conditions to render the graft copolyelectrolyte PAA-g-PS were analyzed by XH NMR spectroscopy and SEC. Figure 8a shows the SEC curves of the polystyrene macromonomer (PS-MA), the crude poly (ferf-butyl acrylate-gra/f-styrene) (PTBA-g-PS) and the PTBA-g-PS the polymethylacrylate (PMA) originates from esterification of the poly (acrylic acid) (PAA) obtained after complete saponification of the graft copolymer and represents the backbone. The XH NMR spectra of PSMA, PTBA-g-PS and of the final reaction product PAA-g-PS are shown in Fig. 8b. [Pg.32]

Polyacrylic acid (PAA)—P2VP mixed brushes were prepared by a similar synthetic procedure, by grafting of carboxyl-terminated poly(ferf-butyl acrylate) (PtBuA) and P2VP. Afterwards, PtBuA was hydrolyzed in the presence of p-toluene sulfonic acid. The same strategy was employed to graft mixed PEL brushes on polymer surfaces. In this case plasma treatment was used to functionalize surface of polymer substrates. We introduced amino groups on the surface of PA-6 and PTFE by treatment of the polymer samples with NH3 plasma. Then the carboxyl terminated homopolymers were grafted step by step from the melt to the solid substrate via amide bonds. [Pg.121]

Allow the solution to warm to room temperature and stir for 30 min. Cool down the content of the flask to ca. 78°C and then add freshly distilled ferf-butyl acrylate, (4.57 mL, 31 mmol). Stir the mixture for a further 30 min at room temperature. [Pg.81]

Kubisa et al. also used hydroxy-functional PEG after reaction with 2-bromo-propionyl bromide as an ATRP macroinitiator [228]. Their goal, however, was to polymerize ferf-butyl acrylate, rather than St, then to hydrolyze the esters to acid functionality and study the cation binding properties of the doubly amphiphilic block copolymers. They utilized a CuBr/PMDETA catalyst system for the polymerization and, although the macroinitiator was completely consumed, MALDI-TOF analysis indicated that bromine was replaced with a hydrogen at... [Pg.79]


See other pages where Ferf-Butyl acrylate is mentioned: [Pg.130]    [Pg.6]    [Pg.8]    [Pg.18]    [Pg.24]    [Pg.25]    [Pg.133]    [Pg.19]    [Pg.80]    [Pg.775]    [Pg.71]    [Pg.31]    [Pg.73]    [Pg.74]    [Pg.107]    [Pg.75]    [Pg.83]    [Pg.21]    [Pg.31]    [Pg.32]    [Pg.35]    [Pg.119]    [Pg.608]    [Pg.532]    [Pg.80]    [Pg.146]    [Pg.77]    [Pg.152]    [Pg.205]    [Pg.40]    [Pg.346]    [Pg.359]    [Pg.359]    [Pg.359]    [Pg.155]    [Pg.155]   
See also in sourсe #XX -- [ Pg.77 , Pg.95 , Pg.106 , Pg.109 , Pg.131 , Pg.133 , Pg.191 ]




SEARCH



Butyl Acrylate

© 2024 chempedia.info