Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solid aldehydes

Fig. 5. Relation between the average molecular weight between cross-links, Mc, and the volume fraction of gelatinized collagen (gelatin), v2. The swelling agent is 0.19 mol/1 citric acid - phosphate buffer solution, pH 7.4 at 80 °C. Experimental data obtained after cross-linking with various aldehydes solid circles, formaldehyde open circles, glutaraldehyde squares, glyoxal. The curve is predicted by Eq. (2) with X = 0.52 0.04 [38]... Fig. 5. Relation between the average molecular weight between cross-links, Mc, and the volume fraction of gelatinized collagen (gelatin), v2. The swelling agent is 0.19 mol/1 citric acid - phosphate buffer solution, pH 7.4 at 80 °C. Experimental data obtained after cross-linking with various aldehydes solid circles, formaldehyde open circles, glutaraldehyde squares, glyoxal. The curve is predicted by Eq. (2) with X = 0.52 0.04 [38]...
A mixture of 3.5 g N-methylformanilide and 4.0 g P0CI3 was held at room temperature for 0.5 h producing a deep red color. To this there was added 2.0 g 1,4-dimethoxy-2-(n)-propoxybenzene, and the mixture was held on the steam bath for 1.75 h. It was then poured over 400 mL shaved ice, and vigorous stirring was maintained until the dark complex had completely broken up. This aqueous mixture was allowed to stand overnight, and the crude aldehyde solids that had formed were removed by filtration, water washed, and sucked as dry as possible. [Pg.1003]

This reaction consists of the condensation of two molecular equivalents of a 1,3 diketone (or a J3-keto-ester) with one equivalent of an aldehyde and one of ammonia. Thus the interaction of ethyl acetoacetate and acetaldehyde and ammonia affords the 1,4-dihy dro-pyridine derivative (1), which when boiled with dilute nitric acid readily undergoes dehydrogenation and aromatisation" to gb e the diethyl ester of collidine (or 2,4,6-trimethyl-pyridine-3,5 dicarboxylic acid (II)). For the initial condensation the solid aldehyde-ammonia can conveniently be used in place of the separate reagents. [Pg.295]

Gently warm a mixture of 32 g. (32 ml.) of ethyl acetoacetate and 10 g. of aldehyde-ammonia in a 400 ml. beaker by direct heating on a gauze, stirring the mixture carefully with a thermometer. As soon as the reaction starts, remove the heating, and replace it when the reaction slackens, but do not allow the temperature of the mixture to exceed 100-no the reaction is rapidly completed. Add to the mixture about twice its volume of 2A -hydrochloric acid, and stir the mass until the deposit either becomes solid or forms a thick paste, according to the quality of the aldehyde-ammonia employed. Decant the aqueous acid layer, repeat the extraction of the deposit with more acid, and again decant the acid, or filter off the deposit if it is solid. Transfer the deposit to a conical flask and recrystallise it twice from ethanol (or methylated spirit) diluted with an equal volume of water. The i,4-dihydro-collidine-3,5-dicarboxylic diethyl ester (I) is obtained as colourless crystals, m.p. 130-131°. Yield 12 5 g,... [Pg.296]

It is marketed as a 35-40 per cent, solution in water (formalin). The rpactions of formaldehyde are partly typical of aldehydes and partly peculiar to itself. By evaporating an aqueous solution paraformaldehyde or paraform (CHjO), an amorphous white solid is produced it is insoluble in most solvents. When formaldehyde is distilled from a 60 per cent, solution containing 2 per cent, of sulphuric acid, it pol5unerises to a crystalline trimeride, trioxane, which can be extracted with methylene chloride this is crystalline (m.p. 62°, b.p. 115°), readily soluble in water, alcohol and ether, and devoid of aldehydic properties ... [Pg.319]

The experimental procedure to be followed depends upon the products of hydrolysis. If the alcohol and aldehyde are both soluble in water, the reaction product is divided into two parts. One portion is used for the characterisation of the aldehyde by the preparation of a suitable derivative e.g., the 2 4-dinitrophenylhydrazone, semicarbazone or di-medone compound—see Sections 111,70 and 111,74). The other portion is employed for the preparation of a 3 5-dinitrobenzoate, etc. (see Section 111,27) it is advisable first to concentrate the alcohol by dis tillation or to attempt to salt out the alcohol by the addition of solid potassium carbonate. If one of the hydrolysis products is insoluble in the reaction mixture, it is separated and characterised. If both the aldehyde and the alcohol are insoluble, they are removed from the aqueous layer separation is generally most simply effected with sodium bisulphite solution (compare Section Ill,74),but fractional distillation may sometimes be employed. [Pg.328]

For water insoluble aldehydes or ketones, the following alternative procedure may be used. Reflux a mixture of 0-6 g. of the aldehyde or ketone, 0 5 g. of hydroxylamine hydrochloride, 5 ml. of ethanol and 0 5 ml. of pyridine on a water bath for 15-60 minutes. Remove the alcohol either by distillation (water bath) or by evaporation of the hot solution in a stream of air (water pump). Add 5 ml. of water to the cooled residue, cool in an ice bath and stir until the oxime crystallises Filter off the solid, wash it with a little water and dry. Recrystallise from alcohol (95 per cent, or more dilute), benzene, or benzene - light petroleum (b.p. 60-80°). [Pg.345]

Heat a suspension of 22 g. of the diacetate in a mixture of 120 ml. of concentrated hydrochloric acid, 190 ml. of water and 35 ml. of alcohol under reflux for 45 minutes. Cool the mixture to 0°, filter the solid with suction, and wash with water. Purify the crude aldehyde by rapid steam distillation (Fig. II, 41, 3) collect about 1500 ml. of distillate during 15 minutes, cool, filter, and dry in a vacuum desiccator over calcium chloride. The yield of pure o-nitrobenzaldehyde, m.p. 44—45°, is 10 g. The crude solid may also be purified after drying either by distillation under reduced pressure (the distillate of rather wide b.p., e.g., 120-144°/3-6 mm., is quite pure) or by dissolution in toluene (2-2-5 ml. per gram) and precipitation with light petroleum, b.p. 40°-60° (7 ml. per ml. of solution). [Pg.696]

Decant the ethereal solution from the yellow aldimine stannichloride which has separated, rinse the solid with two 50 ml. portions of ether, and transfer the solid to a 2-5 litre flask fitted for steam distillation and immersed in an oil bath at 110-120°. Pass steam through a trap (compare Fig. 11,40, 1,6) to remove condensed water, then through a superheater heated to 260° (Fig. I, 7, 2), and finally into the mixture (2). Continue the passage of y steam until the aldehyde is completely removed (4-5 litres 8-10 hours). Filter the white soUd at the pump, and dry in the air. The resulting p-naphthaldehyde, m.p. 53-54°, weighs 12 g. It may be further purified by distillation under diminished pressure (Fig. II, 19, ) -, pour the colourless distillate, b.p. 156-158°/15 mm., while hot into a mortar and powder it when cold. The m.p. is 57- 58°, and the recovery is over 90 per cent. [Pg.698]

Oximes (compare Section III,74,B). The following procedure has wide application. Dissolve 0-5 g. of hydroxylamine hydrochloride in 2 ml. of water, add 2 ml. of 10 per cent, sodium hydroxide solution and 0-2 g. of the aldehyde (or ketone). If the latter is insoluble, add just sufficient alcohol to the mixture to give a clear solution. Heat the mixture under reflux for 10-15 minutes, and then cool in ice. If crystals separate, filter these off, and recrystallise from alcohol, dilute alcohol, benzene or light petroleum (b.p. 60-80°). If no solid separates on cooling, dilute with 2-3 volumes of water, filter the precipitated sohd, and recrystallise. [Pg.721]

Alternatively, dissolve approximately equivalent amounts of the aldehyde (or ketone) and the solid reagent in the minimum volume of cold glacial acetic acid, and reflux for 15 minutes. The p-nitrophenyl-hydrazone separates on cooling or upon careful dilution with water. [Pg.722]

Aromatic alcohols are insoluble in water and usually burn with a smoky flame. Their boiling points are comparatively high some are solids at the ordinary temperature. Many may be oxidised by cautious addi-tion of dilute nitric acid to the corresponding aldehyde upon neutralis-tion of the excess of acid, the aldehyde may be isolated by ether extraction or steam distillation, and then identified as detailed under Aromatic Aldehydes, Section IV,135. [Pg.817]

Oximes, hydrazines and semicarbazones. The hydrolysis products of these compounds, t.e., aldehydes and ketones, may be sensitive to alkali (this is particularly so for aldehydes) it is best, therefore, to conduct the hydrolysis with strong mineral acid. After hydrolysis the aldehyde or ketone may be isolated by distillation with steam, extraction with ether or, if a solid, by filtration, and then identified. The acid solution may be examined for hydroxylamine or hydrazine or semicarbazide substituted hydrazines of the aromatic series are precipitated as oils or solids upon the addition of alkali. [Pg.1075]

To a stirred solution of 0.5 ml of 10% aqueous sodium hydroxide and 8.25 mmol of the appropriate aldehyde in 10 ml of ethanol, 8.25 mmol of 2-ace tylpyri dine was added drop wise during 2-3 hours. The temperature was kept at 0°C. After stirring for another 2 hours the reaction mixture was filtered, yielding almost pure solid 2.4a (7.26 mmol, 88%) or 2.4b (7.76 mmol, 94 %). After crystallisation... [Pg.64]

Aldehydes —CHO (See also Table 7.49 for C—H.) All values given below are lowered in liquid-film or solid-state spectra by about 10-20 cm Vapor-phase spectra have values raised about 20 cm Saturated 1740-1720 ... [Pg.740]

Methylarsine, trifluoromethylarsine, and bis(trifluoromethyl)arsine [371-74-4] C2HAsF, are gases at room temperature all other primary and secondary arsines are liquids or solids. These compounds are extremely sensitive to oxygen, and ia some cases are spontaneously inflammable ia air (45). They readily undergo addition reactions with alkenes (51), alkynes (52), aldehydes (qv) (53), ketones (qv) (54), isocyanates (55), and a2o compounds (56). They also react with diborane (43) and a variety of other Lewis acids. Alkyl haUdes react with primary and secondary arsiaes to yield quaternary arsenic compounds (57). [Pg.336]

Condensations of aldehydes and ketones are catalyzed homogeneously by acids and bases, but solid bases are preferred, such as anion exchange resins and alkah or alkaline earth hydroxides or phosphates. [Pg.2094]

PIcollnIc aldehyde (4). BenzenesuHonyl chlonde (6 92 g, 40 mmol) was added with stirring to a chilled solution ol picollnic hydrazide 2 (4 62 g, 33 mmol) in pyndlne (3S mL). After l h the solvent was removed In vacuum, the residue stirred with water, liliered and the solid washed with EtOH and EtzO to afford 10 5 g ol 3 (100%), mp 202-203°C... [Pg.248]

Potassium carbonate. Solid potassium hydroxide is very rapid and efficient. Its use is limited almost entirely to the initial drying of organic bases. Alternatively, sometimes the base is shaken first with a concentrated solution of potassium hydroxide to remove most of the water present. Unsuitable for acids, aldehydes, ketones, phenols, thiols, amides and esters. Also used for drying gaseous amines and ammonia. [Pg.28]


See other pages where Solid aldehydes is mentioned: [Pg.228]    [Pg.141]    [Pg.413]    [Pg.535]    [Pg.5014]    [Pg.483]    [Pg.228]    [Pg.141]    [Pg.413]    [Pg.535]    [Pg.5014]    [Pg.483]    [Pg.18]    [Pg.19]    [Pg.19]    [Pg.24]    [Pg.28]    [Pg.95]    [Pg.142]    [Pg.163]    [Pg.196]    [Pg.306]    [Pg.34]    [Pg.324]    [Pg.701]    [Pg.704]    [Pg.705]    [Pg.721]    [Pg.866]    [Pg.892]    [Pg.173]    [Pg.179]    [Pg.79]    [Pg.133]    [Pg.2093]    [Pg.55]    [Pg.55]   
See also in sourсe #XX -- [ Pg.607 ]




SEARCH



Peptide aldehydes by solid phase synthesis

Solid-phase synthesis aldehydes

© 2024 chempedia.info