Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dihydrofolic reductase and

Fig. 7.15 The variation in torsion angles can be effectively represented as a series of dials, where the time corresponds to the distance from the centre of the dial. Data from a molecular dynamics simulation of an intermolecular complex between the enzyme dihydrofolate reductase and a triazine inhibitor [Leach and Klein 1995]. Fig. 7.15 The variation in torsion angles can be effectively represented as a series of dials, where the time corresponds to the distance from the centre of the dial. Data from a molecular dynamics simulation of an intermolecular complex between the enzyme dihydrofolate reductase and a triazine inhibitor [Leach and Klein 1995].
The methylation of deoxyuridine monophosphate (dUMP) to thymidine monophosphate (TMP), catalyzed by thymidylate synthase, is essential for the synthesis of DNA. The one-carbon fragment of methy-lene-tetrahydrofolate is reduced to a methyl group with release of dihydrofolate, which is then reduced back to tetrahydrofolate by dihydrofolate reductase. Thymidylate synthase and dihydrofolate reductase are especially active in tissues with a high rate of cell division. Methotrexate, an analog of 10-methyl-tetrahydrofolate, inhibits dihydrofolate reductase and has been exploited as an anticancer drug. The dihydrofolate reductases of some bacteria and parasites differ from the human enzyme inhibitors of these enzymes can be used as antibacterial drugs, eg, trimethoprim, and anti-malarial drugs, eg, pyrimethamine. [Pg.494]

III. The answer is d, (Hardman, pp 1247, L135.) Leucovorin prevents methotrexate from inhibiting dihydrofolate reductase and reverses all of its adverse effects except neurotoxicity... [Pg.95]

Recently, the enzymatic formation of folinic acid has been utilized to synthesize radioactively labeled products.34 The preparation of 5-formyl tetrahydrofolate, 9,3, 5 -3H and 5-formyl-14C-tetrahydrofolate starts with tritiated folic acid, which is reduced to dihydrofolate, incubated in the presence of formaldehyde, dihydrofolate reductase, and NADPH, and finally incubated with 5,10-methylenetetrahydrofolate dihydrogenase. The product,... [Pg.331]

Successful fusion (2) is a rare event, but the frequency can be improved by adding polyethylene glycol (PEG). To obtain only successfully fused cells, incubation is required for an extended period in a primary culture with HAT medium (3), which contains hypoxan-thine, aminopterin, and thymidine. Amino-pterin, an analogue of dihydrofolic acid, competitively inhibits dihydrofolate reductase and thus inhibits the synthesis of dTMP (see p. 402). As dTMP is essential for DNA synthesis, myeloma cells cannot survive in the presence of aminopterin. Although spleen cells are able to circumvent the inhibitory effect of aminopterin by using hypoxanthine and thymidine, they have a limited lifespan and die. Only hybridomas survive culture in HAT medium, because they possess both the immortality of the myeloma cells and the spleen cells metabolic side pathway. [Pg.304]

Dolnick BJ, Pink JJ. Effects of 5-fluorouracil in dihydrofolate reductase and dihydrofolate reductase mRNA from methotrexate-resistant KB cells. J Biol Chem 1985 260 3006-3014. [Pg.41]

Trimethoprim is a competitive inhibitor of the enzyme dihydrofolate reductase and can thus prevent the formation of tetrahydrofolate thereby blocking the synthesis of purines. The affinity of trimethoprim for the enzyme in microorganisms is 10,000 times higher than for the human enzyme which explains the selective toxicity. Used alone its main indication is acute uncomplicated urinary tract infections. It is then as effective as co-trimoxazole but has the advantage of fewer adverse reactions. [Pg.414]

Methotrexate is a folic acid analogue. Its mechanism of action is based on the inhibition of dihydrofolate reductase. Inhibition of dihydrofolate reductase leads to depletion of the tetrahydrofolate cofactors that are required for the synthesis of purines and thymidylate (see Fig. 2). Enzymes that are required for purine and thymidylate synthesis are also directly inhibited by the polyglutamates of methotrexate which accumulate with dihydrofolate reductase inhibition. The mechanisms that can cause resistance include decreased transport of methotrexate into the tumor cells, a decreased affinity of the antifolate for dihydrofolate reductase, increased concentrations of intracellular dihydrofolate reductase and decreased thymidylate synthetase activity. [Pg.451]

Pemetrexed is chemically similar to folic acid. It inhibits three enzymes used in purine and pyrimidine synthesis - thymidylate synthetase, dihydrofolate reductase, and glycinamide ribonucleotide formyl transferase. By inhibiting the formation of precursor purine and pyrimidine nucleotides, pemetrexed prevents the formation of DNA and RNA. In 2004 it was approved for treatment of malignant pleural mesothelioma and as a second-line agent for the treatment of non-small cell lung cancer. Adverse effects include gastrointestinal complaints, bone marrow suppression, alopecia, allergic and neurotoxic reactions. [Pg.452]

Suramin (Germanin) is a derivative of a nonmetallic dye whose antiparasitic mechanism of action is not clear. It appears to act on parasite specific a-glyc-erophosphate oxidase, thymidylate synthetase, dihydrofolate reductase, and protein kinase but not on host enzymes. [Pg.609]

The active triazine metabolite, inhibits plasmodial dihydrofolate reductase and thus disrupts the synthesis of nucleic acids in the parasite. [Pg.352]

Examples discussed in this book include digitalis glycosides, which act by inhibiting Na+,K+ ATPase in cell membranes methotrexate, which inhibits the enzyme dihydrofolate reductase and glucocorticoid hormones. [Pg.56]

Folic acid deficiency can be caused by drugs. Methotrexate and, to a lesser extent, trimethoprim and pyrimethamine, inhibit dihydrofolate reductase and may result in a deficiency of folate cofactors and ultimately in megaloblastic anemia. Long-term therapy with phenytoin can also cause folate deficiency, but only rarely causes megaloblastic anemia. [Pg.741]

Methotrexate s principal mechanism of action at the low doses used in the rheumatic diseases probably relates to inhibition of aminoimidazolecarboxamide ribonucleotide (AICAR) transformylase and thymidylate synthetase, with secondary effects on polymorphonuclear chemotaxis. There is some effect on dihydrofolate reductase and this affects lymphocyte and macrophage function, but this is not its principal mechanism of action. Methotrexate has direct inhibitory effects on proliferation and stimulates apoptosis in immune-inflammatory cells. Additionally, inhibition of proinflammatory cytokines linked to rheumatoid synovitis has been shown, leading to decreased inflammation seen with rheumatoid arthritis. [Pg.808]

In many areas, resistance to folate antagonists and sulfonamides is common for P falciparum and less common for P vlvax. Resistance is due primarily to mutations in dihydrofolate reductase and dihydropteroate synthase, with increasing numbers of mutations leading to increasing levels of resistance. At present, resistance seriously limits the efficacy of sulfadoxine-pyrimethamine (Fansidar) for the treatment of malaria in most areas, but in Africa most parasites exhibit only moderate resistance, such that antifolates appear to continue to offer preventive efficacy against malaria. Because different mutations may mediate resistance to different agents, cross-resistance is not uniformly seen. [Pg.1129]

Thymidylate synthase requires methylene tetrahydro-folate as a reductant and the reduction of dihydrofolate is also an important part of the process. In protozoa dihydrofolate reductase and thymidylate synthase occur as a singlechain bifunctional enzyme.f As has been pointed out in the main text, such folic acid analogs as methotrexate are among the most useful anticancer drugs. By inhibiting dihydrofolate reductase they deprive thymidylate synthase of an essential substrate. [Pg.812]

A four-base overlap between dihydrofolate reductase and thymidylate synthase has been found201 in the DNA of phage T4. A transposable DNA insertion sequence (see Section D,5) in E. coli encodes two genes, one of which is contained within the other and which is transcribed from the opposite strand of DNA.202 The double-stranded RNA of a reovirus produces two peptides from the same sequence using two different AUG initiation codons in different reading frames 203... [Pg.1540]

Tetrahydrofolate cofactors participate in one-carbon transfer reactions. As described above in the section on vitamin B12, one of these essential reactions produces the dTMP needed for DNA synthesis. In this reaction, the enzyme thymidylate synthase catalyzes the transfer of the one-carbon unit of N 5,N 10-methylenetetrahydrofolate to deoxyuridine monophosphate (dUMP) to form dTMP (Figure 33-2, reaction 2). Unlike all of the other enzymatic reactions that utilize folate cofactors, in this reaction the cofactor is oxidized to dihydrofolate, and for each mole of dTMP produced, one mole of tetrahydrofolate is consumed. In rapidly proliferating tissues, considerable amounts of tetrahydrofolate can be consumed in this reaction, and continued DNA synthesis requires continued regeneration of tetrahydrofolate by reduction of dihydrofolate, catalyzed by the enzyme dihydrofolate reductase. The tetrahydrofolate thus produced can then reform the cofactor N 5,N 10-methylenetetrahydrofolate by the action of serine transhydroxy- methylase and thus allow for the continued synthesis of dTMP. The combined catalytic activities of dTMP synthase, dihydrofolate reductase, and serine transhydroxymethylase are often referred to as the dTMP synthesis cycle. Enzymes in the dTMP cycle are the targets of two anticancer drugs methotrexate inhibits dihydrofolate reductase, and a metabolite of 5-fluorouracil inhibits thymidylate synthase (see Chapter 55 Cancer Chemotherapy). [Pg.750]

The sulfones and sulfonamides synergize with the inhibitors of dihydrofolate reductase, and the combinations have been effective in controlling malaria, toxoplasmosis, and coccidiosis. Fansidar, a combination of sulfadoxine and pyrimethamine, has been successful in controlling some strains of chloroquine-resistant Plasmodium falciparum malaria (see Chapter 53 Antiprotozoal Drugs). However, reports of Fansidar resistance have increased in recent years. New inhibitors effective against the sulfonamide-resistant 7,8-dihydropteroate synthase are needed. [Pg.1193]

The active-site-directed inhibition of enzymes has been an important research topic in pharmaceutical drug design (Sandler, 1980). An early development of anti-cancer agents involved inhibitions of dihydrofolate reductase and thymidylate synthetase. Search enzyme resource sites for kinetic data (turnover number, Km and Kt) of these two enzymes. [Pg.140]

Both dihydrofolate reductase and thymidylate synthase reactions are targets for anticancer chemotherapy. Cancer is basically a disease of uncontrolled cell replication, and an essential part of cell replication is DNA synthesis. This means that a requirement exists for deoxynu-cleotide synthesis for growth. Inhibition of deoxynucleotide synthesis should inhibit the growth of cancer cells. [Pg.113]

Deazaaminopterin derivatives (folate analogues) are potent antineoplastics <88USP4725687, 91USP5077404) particularly in treating tumors resistant to methotrexate or aminopterin <90MIP9000172>. Some derivatives are equipotent with methotrexate, both as inhibitors of bovine liver dihydrofolate reductase and of L1210 murine leukemia cells. [Pg.624]

Alterations in the binding site of ribosomal protein SI2, accounts for high-level insusceptibility to streptomycin in E. coli and S. aureus [166] whereas mutations in RNA polymerase are associated with decreased sensitivity to rifampicin [167], Other chromosomal mutational examples involving insensitive target enzymes occur with modified dihydrofolate reductases and dihydroperoate synthetases [168], Chromosomal mutations in E. coli cause overproduction of the target enzyme for trimethoprim (34) activity [169]. Mutation of target enzyme in Strep, pneumoniae provides lower sul-... [Pg.160]


See other pages where Dihydrofolic reductase and is mentioned: [Pg.43]    [Pg.511]    [Pg.198]    [Pg.512]    [Pg.432]    [Pg.536]    [Pg.609]    [Pg.36]    [Pg.741]    [Pg.166]    [Pg.464]    [Pg.464]    [Pg.529]    [Pg.1309]    [Pg.338]    [Pg.145]    [Pg.231]    [Pg.85]    [Pg.682]    [Pg.390]    [Pg.376]    [Pg.599]    [Pg.858]   


SEARCH



7,8-Dihydrofolate

Dihydrofolate reductase

© 2024 chempedia.info