Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diesel fuel operability

Extensive alterations to the fuel system was necessary in order to bum bio-oil from pyrolysis. The flow diagram in Fig. 2 shows the layout of the gas turbine system after modifications. The temperatures and pressures refer to diesel fuel operation. [Pg.1455]

Turbine power Diesel fuel Operation Dual fuel operation... [Pg.1456]

The equipment for measuring and analysing emissions is shown in Fig. 1 and 2. The oxygen content "as measured" is 17.5 %, The excess air ratio is in the diesel fuel operation 3.3 and in the dual fuel operation about 6. [Pg.1457]

The diesel engine operates, inherently by its concept, at variable fuel-air ratio. One easily sees that it is not possible to attain the stoichiometric ratio because the fuel never diffuses in an ideal manner into the air for an average equivalence ratio of 1.00, the combustion chamber will contain zones that are too rich leading to incomplete combustion accompanied by smoke and soot formation. Finally, at full load, the overall equivalence ratio... [Pg.212]

For a long time the official specifications for diesel fuel set only a mciximum viscosity of 9.5 mm /s at 20°C. Henceforth, a range of 2.5 mm /s minimum to 4.5 mm /s maximum has been set no longer for 20°C but at 40°C which seems to be more representative of injection pump operation. Except for special cases such as very low temperature very fluid diesel fuel and very heavy products, meeting the viscosity standards is not a major problem in refining. [Pg.214]

The experimental conditions used to determine the CFPP do not exactly reflect those observed in vehicles the differences are due to the spaces in the filter mesh which are much larger in the laboratory filter, the back-pressure and the cooling rate. Also, research is continuing on procedures that are more representative of the actual behavior of diesel fuel in a vehicle and which correlate better with the temperature said to be operability , the threshold value for the Incident. In 1993, the CEN looked at two new methods, one called SFPP proposed by Exxon Chemicals (David et al., 1993), the other called AGELFI and recommended by Agip, Elf and Fina (Hamon et al., 1993). [Pg.215]

As we have shown previously, obtaining both good cold operation characteristics and sufficient cetane numbers constitutes the principal objective for the refiner in the formulation of diesel fuel. To this is added the need for deep desulfurization and, perhaps in the future, limitations placed on the chemical nature of the components themselves, e.g., aromatics content. [Pg.223]

The most important point in the use of diesel fuel is its cold temperature behavior. The subject has been addressed previously because it directly affects the engine operation in winter conditions. [Pg.246]

The flash point of a petroleum liquid is the temperature to which it must be brought so that the vapor evolved burns spontaneously in the presence of a flame. For diesel fuel, the test is conducted according to a closed cup technique (NF T 60-103). The French specifications stipulate that the flash point should be between 55°C and 120°C. That constitutes a safety criterion during storage and distribution operations. Moreover, from an official viewpoint, petroleum products are classified in several groups according to their flash points which should never be exceeded. [Pg.249]

The main justification for diesel fuel desulfurization is related to particulate emissions which are subject to very strict rules. Part of the sulfur is transformed first into SO3, then into hydrated sulfuric acid on the filter designed to collect the particulates. Figure 5.21 gives an estimate of the variation of the particulate weights as a function of sulfur content of diesel fuel for heavy vehicles. The effect is greater when the test cycle contains more high temperature operating phases which favor the transformation of SO2 to SO3. This is particularly noticeable in the standard cycle used in Europe (ECE R49). [Pg.254]

Finally, sulfur has a negative effect on the performance of the catalyst itself. One sees for example in Figure 5.23 that the initiation temperature increases with the sulfur level in the diesel fuel, even between 0.01% and 0.05%. Yet, in the diesel engine, characterized by relatively low exhaust temperatures, the operation of the catalyst is a determining factor. One can thus predict an ultimate diesel fuel desulfurization to levels lower than 0.05%. [Pg.255]

All modern refineries have conversion units, designed to transform black effluent streams into lighter products gas, gasoline, diesel fuel. Among these conversion units, coking processes take place by pyrolysis and push the cracking reaction so far that the residue from the operation is very heavy it is called coke . [Pg.292]

David, P G.l. Brown and E.W. Lehman (1993), SFPP - A new laboratory test for assessment of low temperature operability of modern diesel fuels". CEC 4th International Symposium, Birmingham. [Pg.454]

The first methanol bus in the world was placed in revenue service in Auckland, New Zealand in June 1981. It was a Mercedes O 305 city bus using the M 407 hGO methanol engine. This vehicle operated in revenue service for several years with mixed results. Fuel economy on an equivalent energy basis ranged from 6 to 17% mote than diesel fuel economy. Power and torque matched the diesel engine and drivers could not detect a difference. ReHabiUty and durabihty of components was a problem. Additional demonstrations took place in Berlin, Germany and in Pretoria, South Africa, both in 1982. [Pg.428]

Sulfur. Sulfur in diesel fuel should be kept below set limits for both environmental and operational reasons. Operationally, high levels of sulfur can lead to high levels of corrosion and engine wear owing to emissions of SO that can react with condensed water during start-up to form sulfuric acids. From an environmental perspective, sulfur bums to SO2 and SO, the exact spHt being a function of temperature and time in the combustion chamber. [Pg.192]

Conventional Transportation Fuels. Synthesis gas produced from coal gasification or from natural gas by partial oxidation or steam reforming can be converted into a variety of transportation fuels, such as gasoline, aviation turbine fuel (see Aviation and other gas turbine fuels), and diesel fuel. A widely known process used for this appHcation is the Eischer-Tropsch process which converts synthesis gas into largely aHphatic hydrocarbons over an iron or cobalt catalyst. The process was operated successfully in Germany during World War II and is being used commercially at the Sasol plants in South Africa. [Pg.277]

VFO works well in gas turbines. In a nine-month test program, the combustion properties of VFO were studied in a combustion test module. A gas turbine was also operated on VFO. The tests were conducted to study the combustion characteristics of VFO, the erosive and corrosive effects of VFO, and the operation of a gas turbine on VFO. The combustion tests were conducted on a combustion test module built from a GE Frame 5 combustion can and liner. The gas turbine tests were conducted on a Ford model 707 industrial gas turbine. Both the combustion module and gas turbine were used in the erosion and corrosion evaluation. The combustion tests showed the VFO to match natural gas in flame patterns, temperature profile, and flame color. The operation of the gas turbine revealed that the gas turbine not only operated well on VFO, but its performance was improved. The turbine inlet temperature was lower at a given output with VFO than with either natural gas or diesel fuel. This phenomenon is due to the increase in exhaust mass flow provided by the addition of steam in the diesel for the vaporization process. Following the tests, a thorough inspection was made of materials in the combustion module and on the gas turbine, which came into contact with the vaporized fuel or with the combustion gas. The inspection revealed no harmful effects on any of the components due to the use of VFO. [Pg.451]


See other pages where Diesel fuel operability is mentioned: [Pg.1452]    [Pg.1452]    [Pg.178]    [Pg.214]    [Pg.219]    [Pg.240]    [Pg.252]    [Pg.40]    [Pg.37]    [Pg.47]    [Pg.47]    [Pg.191]    [Pg.191]    [Pg.192]    [Pg.192]    [Pg.370]    [Pg.458]    [Pg.211]    [Pg.211]    [Pg.526]    [Pg.69]    [Pg.408]    [Pg.411]    [Pg.199]    [Pg.290]    [Pg.462]    [Pg.2377]    [Pg.2494]    [Pg.93]    [Pg.214]    [Pg.221]    [Pg.286]    [Pg.68]    [Pg.331]    [Pg.332]   
See also in sourсe #XX -- [ Pg.215 ]




SEARCH



Diesel

Diesel fuel

Dieselization

Fuels diesel fuel

© 2024 chempedia.info