Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Determinations adipates

The batch precipitation tests show dramatic effects of adipic acid slurry concentration and solid phase oxidation fraction on coprecipitation of adipic acid in scrubber solids. Real world scrubbers would probably never operate at adipic acid concentrations as high as those tested and would also not likely ever produce pure phase calcium sulfite hemihydrate. Therefore, the magnitude of the results observed is somewhat a product of the laboratory test conditions. The results do, however, establish the potential importance of adipic acid coprecipitation and, hence, the need for analysis of scrubber solids for adipic acid when determining adipic acid chemical degradation rates by a mass balance calculation approach. [Pg.238]

As an example of the quantitative testing of Eq. (5.47), consider the polymerization of diethylene glycol (BB) with adipic acid (AA) in the presence of 1,2,3-propane tricarboxylic acid (A3). The critical value of the branching coefficient is 0.50 for this system by Eq. (5.46). For an experiment in which r = 0.800 and p = 0.375, p = 0.953 by Eq. (5.47). The critical extent of reaction, determined by titration, in the polymerizing mixture at the point where bubbles fail to rise through it was found experimentally to be 0.9907. Calculating back from Eq. (5.45), the experimental value of p, is consistent with the value =0.578. [Pg.320]

Analytical Procedures. Standard methods for analysis of food-grade adipic acid are described ia the Food Chemicals Codex (see Refs, ia Table 8). Classical methods are used for assay (titration), trace metals (As, heavy metals as Pb), and total ash. Water is determined by Kad-Fisher titration of a methanol solution of the acid. Determination of color ia methanol solution (APHA, Hazen equivalent, max. 10), as well as iron and other metals, are also described elsewhere (175). Other analyses frequendy are required for resia-grade acid. For example, hydrolyzable nitrogen (NH, amides, nitriles, etc) is determined by distillation of ammonia from an alkaline solution. Reducible nitrogen (nitrates and nitroorganics) may then be determined by adding DeVarda s alloy and continuing the distillation. Hydrocarbon oil contaminants may be determined by ir analysis of halocarbon extracts of alkaline solutions of the acid. [Pg.246]

The molecular weight and its distribution have been determined by laser light scattering, employing a new apparatus for ETFE dissolution and solution clarification at high temperature diisobutyl adipate is the solvent at 240°C. The molecular weight of molten ETEE is determined by high temperature rheometry (21). [Pg.366]

Ingredients. Nylon-6,6 is made from the reaction of adipic acid [124-04-9] and hexamethylenediamine [124-09-4]. The manufacture of intermediates for polyamides is extremely important not only is the quaUty of the polymer, such as color, degree of polymerization, and linearity, strongly dependent on the ingredient quaUty, but also the economic success of the producer is often determined by the yields and cost of manufacture of the ingredients. [Pg.232]

Order of thermal stabiUty as determined by differential thermal analysis is sebacic (330°C) > a2elaic = pimelic (320°C) > suberic = adipic = glutaric (290°C) > succinic (255°C) > oxahc (200°C) > malonic (185°C) (19). This order is somewhat different than that in Table 2, and is the result of differences in test conditions. The energy of activation for decarboxylation has been estimated to be 251 kj/mol (60 kcal/mol) for higher members of the series and 126 kJ/mol (30 kcal/mol) for malonic acid (1). [Pg.61]

Plasticizers can be classified according to their chemical nature. The most important classes of plasticizers used in rubber adhesives are phthalates, polymeric plasticizers, and esters. The group phthalate plasticizers constitutes the biggest and most widely used plasticizers. The linear alkyl phthalates impart improved low-temperature performance and have reduced volatility. Most of the polymeric plasticizers are saturated polyesters obtained by reaction of a diol with a dicarboxylic acid. The most common diols are propanediol, 1,3- and 1,4-butanediol, and 1,6-hexanediol. Adipic, phthalic and sebacic acids are common carboxylic acids used in the manufacture of polymeric plasticizers. Some poly-hydroxybutyrates are used in rubber adhesive formulations. Both the molecular weight and the chemical nature determine the performance of the polymeric plasticizers. Increasing the molecular weight reduces the volatility of the plasticizer but reduces the plasticizing efficiency and low-temperature properties. Typical esters used as plasticizers are n-butyl acetate and cellulose acetobutyrate. [Pg.626]

The crystallization kinetics defines the open time of the bond. For automated industrial processes, a fast crystallizing backbone, such as hexamethylene adipate, is often highly desirable. Once the bond line cools, crystallization can occur in less than 2 min. Thus, minimal time is needed to hold or clamp the substrates until fixturing strength is achieved. For specialty or non-automated processes, the PUD backbone might be based on a polyester polyol with slow crystallization kinetics. This gives the adhesive end user additional open time, after the adhesive has been activated, in which to make the bond. The crystallization kinetics for various waterborne dispersions were determined by Dormish and Witowski by following the Shore hardness. Open times of up to 40 min were measured [60]. [Pg.791]

On the other hand, Davies5 , studying the reaction of adipic add with 1,5-pentanediol in diphenyl oxide or diethylaniline found an order increasing slowly from two with conversion. From this result he concluded that Flory s1,252-254> and Hinshelwood s240,241 interpretations are erroneous. Two remarks must be made about the works of Davies5 experimental errors relative to titrations are rather high and kinetic laws are established for conversions below 50%. Under such conditions the accuracy of experimental determinations of orders is rather poor. [Pg.77]

SPE has been applied to phthalate esters (plasticisers in PVC), polar pesticides (agricultural usage) and for other continuous pollution monitoring problems and environmental analyses [272]. For these applications SPE has largely displaced LLE as the preferred technique for the preparation of liquid samples, e.g. EPA method 506 is concerned with the determination of phthalates and adipate esters in drinking water. [Pg.128]

Hydrolysis of polyamide-based formulations with 6 N HC1 followed by TLC allows differentiation between a-aminocaproic acid (ACA) and hexamethylenedi-amine (HMD) (hydrolysis products of PA6 and PA6.6, respectively), even at low levels. The monomer composition (PA6/PA6.6 ratio) can be derived after chromatographic determination of the adipic acid (AA) content. Extraction of the hydrolysate with ether and derivatisa-tion allow the quantitative determination of fatty acids (from lubricants) by means of GC (Figure 3.27). Further HC1/HF treatment of the hydrolysis residue, which is composed of mineral fillers, CB and nonhydrolysable polymers (e.g. impact modifiers) permits determination of total IM and CB contents CB is measured quantitatively by means of TGA [157]. Acid hydrolysis of flame retarded polyamides allows to determine the adipic acid content (indicative of PA6.6) by means of HPLC, HCN content (indicative of melamine cyanurate) and fatty acid (indicative of a stearate) by means of GC [640]. Determination of ethylene oxide-based antistatic agents... [Pg.154]

Determine the empirical (simplest) formula of adipic acid. [Pg.34]

Determination of Phthalate and Adipate Esters in Drinking Water by LLE or LSE and GC with Photoionization... [Pg.1205]

The gel point is usually determined experimentally as that point in the reaction at which the reacting mixture loses fluidity as indicated by the failure of bubbles to rise in it. Experimental observations of the gel point in a number of systems have confirmed the general utility of the Carothers and statistical approaches. Thus in the reactions of glycerol (a triol) with equivalent amounts of several diacids, the gel point was observed at an extent of reaction of 0.765 [Kienle and Petke, 1940, 1941], The predicted values of pc, are 0.709 and 0.833 from Eqs. 148 (statistical) and 2-139 (Carothers), respectively. Flory [1941] studied several systems composed of diethylene glycol (/ = 2), 1,2,3-propanetricarboxylic acid (/ = 3), and either succinic or adipic acid (/ = 2) with both stoichiometric and nonstoichiometric amounts of hydroxyl and carboxyl groups. Some of the experimentally observed pc values are shown in Table 2-9 along with the corresponding theoretical values calculated by both the Carothers and statistical equations. [Pg.111]

TABLE 2-9 Gel Point Determinations for Mixture of 1,2,3-Propanetricarboxylic Acid, Diethylene Glycol, and Either Adipic or Succinic Acid"... [Pg.111]

A 50 ml pear-shaped flask, fitted with distillation head, air condenser, vacuum adapter, and receiver is three-quarters filled with AH salt and the air removed by evacuation and filling with nitrogen. It is then heated under nitrogen for 1 h on a silicone oil bath at 220 °C, and for further 3 h at 260-270 °C. After cooling, the flask is broken carefully with a hammer.The polyamide from adipic acid and hexamethylenediamine melts at 265 °C. It can be spun from the melt into threads which can be cold drawn.The viscosity number is determined in concentrated sulfuric acid or in 2 M KCI in 90% formic acid (see 5ect.2.3.3.3.1). [Pg.291]

System (2) has been described for the assay of corticosteroids (cortisone, hydrocortisone, prednisone, and prednisolone) in urine [141]. Prior to introduction into the GC system, the sample was eluted with 2 1 ethyl acetate-methanol, the extracts evaporated to dryness, and then oxidized with sodium bismuthate. Used in the method was a silanized column (132 cm X 5 mm) containing 2,2-dimethylpropane-l,3-diol adipate (0.65%) supported on celite, and operated at 230°C. The carrier gas was argon, and the detector used strontium 90-ionization. The standard deviation was 3.5 % (based on 47 determinations). [Pg.222]

A good example of template copolycondensation has been described by Ogata et al Copolycondensation of 2,6-dimethyl pyridine dicarboxylate and dimethyl adipate with hexamethylene diamine was carried out in the presence of polysaccharide - Pullulane (mol. weight 30,000) used as a template. The reaction was carried out in DMSO at 60 C. It was found that the content of 2,6-dimethyl pyridine dicarboxylate units in the copolyamide, determined by NMR analysis, increased in the presence of Pullulane in comparison with the amount obtained in the absence of the template. This effect can be explained by preferential adsorption by the template of monomer having pyridine groups in comparison with the adsorption of dimethyl adipate. A set of experiments was carried out under the same conditions, but in the presence of poly(acrylonitrile) instead of Pullulane. The composition of copolyamides was the same as in copolycondensation without the template. [Pg.59]

The major urinary metabolite of di(2-ethylhexyl) adipate, 2-ethylhexanoic acid, has been shown to be an appropriate marker for biological monitoring of dietary di(2-ethylhexyl) adipate intake (Loftus etal., 1993, 1994). A limited population study in the United Kingdom was undertaken to estimate the daily intake of di(2-ethylhexyl) adipate following intake of a mean dose of 5.4 mg di(2-ethylhexyl) adipate presented with food. The study involved the determination of the urinary metabolite, 2-ethyl-hexanoic acid (24-h mine sample) in 112 individuals from five geographical locations. A skewed distribution with a median value for the daily intake of 2.7 mg was determined (Loftus et al., 1994). This value is about one third of the indirectly estimated maximum intake of 8. 2 mg per day. The probability of a daily intake in excess of 8.2 mg in the limited population (112 individuals) was calculated to be 3% (Loftus etal, 1994). [Pg.155]

In six male volunteers given 46 mg deuterium-labelled di(2-ethylhexyl) adipate [approx. 0.5 mg/kg bw] in com oil, 2-ethylhexanoic acid was the only metabolite that could be determined in the plasma. It had an elimination half-life of 1.65 h. In urine, the following metabolites were identified (percentage fraction of administered deuterium label) 2-ethylhexanoic acid (8.6%), 2-ethyl-5-hydroxyhexanoic acid (2.6%), 2-ethyl-1,6-hexanedioic acid (0.7%), 2-ethyl-5-ketohexanoic acid (0.2%) and 2-ethylhexanol (0.1%). The half-life for elimination of all metabolites excreted in the urine averaged 1.5 h, and none of the metabolites could be detected after 36 h (Loftus et al, 1993). [Pg.157]

A half-life of 6 min for metabolism of di(2-ethylhexyl) adipate has been determined in rat small intestinal mucous membrane homogenates. The dominant urinary metabolite of di(2-ethylhexyl) adipate (500 mg/kg bw) in male Wistar rats is adipic acid, which accoimts for 20-30% of the administered oral dose. The other major metabolite which was found only in the stomach is mono(2-ethylhexyl) adipate (Takahashi et al., 1981). In cynomolgus monkeys, the glucuronide of mono(2-ethyl-hexyl) adipate and traces of unchanged di(2-ethylhexyl) adipate were foimd in the urine (BUA, 1996). [Pg.157]

Similar structures have been found for many other dicarboxylic acids, including succinic acid, COOH(CH ) COOH glutaric acid, COOH(CH ) COOH adipic acid, COOH(CH,) pOOH, and sebacic aoid, COOH(CH )jCOOH. Crystal structure determinations have also been made of many carboxylic acid hydrates in all of the crystals the carboxyl groups form hydrogen bonds, usually with water mole oules. An example is oxalic acid dihydrate in this crystal the 0—H 0 distance is 2.50 A. [Pg.480]


See other pages where Determinations adipates is mentioned: [Pg.233]    [Pg.121]    [Pg.9]    [Pg.354]    [Pg.121]    [Pg.333]    [Pg.467]    [Pg.515]    [Pg.63]    [Pg.242]    [Pg.50]    [Pg.408]    [Pg.483]    [Pg.224]    [Pg.65]    [Pg.147]    [Pg.94]    [Pg.36]    [Pg.67]    [Pg.294]    [Pg.143]    [Pg.53]    [Pg.130]    [Pg.172]    [Pg.203]   
See also in sourсe #XX -- [ Pg.94 , Pg.95 , Pg.96 , Pg.97 , Pg.98 , Pg.99 , Pg.100 ]




SEARCH



ADIPATE

© 2024 chempedia.info