Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetic law

Therefore, in the cases of both additives, the kinetic law for the catalysis will assume a linear form when the concentration of the added species, or, in the case of sulphuric acid, the nitronium ion generated by its action, is comparable with the concentration of the species already present. This effect was observed to occur when the concentration of additive was about o-2 mol 1, a value in fair agreement with the estimated degree of dissociation of nitric acid ( 2.2.1). [Pg.9]

Under conditions in which benzene and its homologues were nitrated at the zeroth-order rate, the reactions of the halogenobenzenes ([aromatic] = c. o-1 mol 1 ) obeyed no simple kinetic law. The reactions of fluorobenzene and iodobenzene initially followed the same rates as that of benzene but, as the concentration of the aromatic was depleted by the progress of the reaction, the rate deviated to a dependence on the first power of the concentration of aromatic. The same situation was observed with chloro- andjbromo-benzene, but these compounds could not maintain a zeroth-order dependence as easily as the other halogenobenzenes, and the first-order character of the reaction was more marked. [Pg.33]

The observation of nitration in nitromethane fully dependent on the first power of the concentration of aromatic was made later. The rate of reaction of /)-dichlorobenzene ([aromatic] = 0-2 mol [HNO3] = 8-5 mol 1 ) obeyed such a law. The fact that in a similar solution 1,2,4-trichlorobenzene underwent reaction according to the same kinetic law, but about ten times slower, shows that under first-order conditions the rate of reaction depends on the reactivity of the compound. [Pg.33]

Chloroanisole and p-nitrophenol, the nitrations of which are susceptible to positive catalysis by nitrous acid, but from which the products are not prone to the oxidation which leads to autocatalysis, were the subjects of a more detailed investigation. With high concentrations of nitric acid and low concentrations of nitrous acid in acetic acid, jp-chloroanisole underwent nitration according to a zeroth-order rate law. The rate was repressed by the addition of a small concentration of nitrous acid according to the usual law rate = AQ(n-a[HN02]atoioh) -The nitration of p-nitrophenol under comparable conditions did not accord to a simple kinetic law, but nitrous acid was shown to anticatalyse the reaction. [Pg.58]

The rates of nitration of benzene in solutions at 25 °C containing 0-4-2-0 mol 1 of acetyl nitrate in acetic anhydride have been deter-mined.2 The rates accord with the following kinetic law ... [Pg.86]

The reaction of MeO /MeOH with 2-Cl-5(4)-X-thiazoles (122) follows a second-order kinetic law, first order with respect to each reactant (Scheme 62) (297, 301). A remark can be made about the reactivity of the dichloro derivatives it has been pointed out that for reactions with sodium methoxide, the sequence 5>2>4 was observed for monochlorothiazole compounds (302), For 2.5-dichlorothiazole, on the contrary, the experimental data show that the 2-methoxy dehalogenation is always favored. This fact has been related to the different activation due to a substituent effect, less important from position 2 to 5 than from... [Pg.408]

A special situation is created in a polymerization of isolated dienes or similar compounds like diisocyanates. Addition of such a monomer to a growing polymeric chain leaves its second reactive unit in the vicinity of the active center. Consequently, the addition of this unit is favored to the addition of any other unit, and in fact it is governed by a unimolecular and not bimolecular kinetic law. Its addition leads to the formation of a ring, and if ring closure is... [Pg.163]

On the other hand, Davies5 , studying the reaction of adipic add with 1,5-pentanediol in diphenyl oxide or diethylaniline found an order increasing slowly from two with conversion. From this result he concluded that Flory s1,252-254> and Hinshelwood s240,241 interpretations are erroneous. Two remarks must be made about the works of Davies5 experimental errors relative to titrations are rather high and kinetic laws are established for conversions below 50%. Under such conditions the accuracy of experimental determinations of orders is rather poor. [Pg.77]

The dissimilarity in the kinetic laws for chain fracture observed under different flow conditions reflect the deficiencies of the present theories which should be able to incorporate both dependences (M 1 and M 2) into its structure, with either... [Pg.174]

The simplest kinetic law obeyed, when the surface area is constant and the diminution of reaction rate is a consequence of increasing thickness of the barrier layer, is... [Pg.69]

A, obtained if the disinfection process obeyed the first-order kinetic law. B, sigmoid curve. This shows a slow initial rate of kill, a steady rate and finally a slower rate of kill. This is the form of curve most usually encountered. C, obtained if bacteria are dying more quickly than first-order kinetics would predict. The constant, K, diminishes in value continuously during the process. [Pg.232]

Oxidation by Ce(IV) sulphate of antimony(III) chloride in follows a kinetic law ... [Pg.371]

A few details have been reported on the slow reductions of 8303 by As(ni) and T1(I) . In the anaerobic reductions by As(III) the reaction is first-order in 820 and although As(III) certainly catalyses decomposition, the dependence of the rate on [As(III)] is small. Aeration leaves the rate of spontaneous decomposition of 820g unaffected, but the As(III)-catalysed route is accelerated by a factor of ten, the kinetic law remaining unchanged. The oxygen effect is interpreted in terms of the chain reaction... [Pg.481]

When a current flows, the kinetic laws are determined by step 1. For the region where anodic polarization is sufficiently high, we obtain... [Pg.228]

Basic studies on the kinetics of swelling have been performed [1699]. Pure clays (montmoiillonite, illite, and kaolinite) with polymeric inhibitors were investigated, and phenomenologic kinetic laws were established. [Pg.62]

Satisfactory agreement of experiments with kinetic laws, described by Eqs. (44) and (45), are observed only for tantalum and niobium, when the current efficiency approaches 100%. Even for these metals, certain deviations occur which could be attributed to space charge effects,82 electronic leakage currents,83 or other factors. In the case of aluminum, these deviations are relatively large, as, even in barrier-forming electrolytes, some oxide dissolution takes place from the very beginning of voltage supply to an anodized sample.32... [Pg.426]

Kinetic investigations demonstrate that the order of the network formation is nearly unity (see Fig. 1). This result agrees with the polymerization kinetics [3], The formation of the network and the decrease of double bond follow the same kinetic law. [Pg.261]

The most significant difference between brominations in protic and non-protic solvents concerns the kinetic law. Whereas in protic media the reaction is first-order in bromine, in halogenated media it is second-order (Bellucci et ai, 1980). CTC ionization is electrophilically assisted by hydrogen bonding by a protic solvent to the leaving bromide and leads to a bromonium-bromide ion pair. In non-protic media, assistance to the bromination step is provided by a second bromine molecule, leading to a bromonium-tribromide ion pair. In other words, in protic media bromination is solvent-assisted (56) while in halogenated media it is bromine-catalysed (57). [Pg.276]

Hydrogen adsorption was also described as irreversible in our previous mechanism,10 and an empirical kinetic law was used to describe the rate of this step. However, a deeper analysis of literature data revealed that this step is likely in equilibrium, too. On the basis of this evidence, the previously developed model has been modified in this work in order to improve the physical consistency of the proposed mechanism. [Pg.308]

The rate of dissociation has been measured by oxygen uptake in the presence of an inhibitor of chain reactions as in the case of hexaaryl-ethanes. Since the uptake of oxygen obeys the same kinetic law, it is a reasonable extrapolation to suppose that here too the rate-determining step is a dissociation into radicals. When one of the phenyl groups in triphenylmethyl is replaced by a cyclohexyl group, the rate of dissociation of the ethane is reduced by a factor of 170.38 Some dissociation rate parameters are given in Tables III A and B. [Pg.21]

They used a value of 4.1 x 10-11 molal s-1 for rmax, the maximum reaction rate, and 1.4 x 10-5 molal for KA, the half saturation constant. We consider application of this kinetic law in detail in Chapter 28. [Pg.251]

In the previous two chapters (Chapters 26 and 27), we showed how kinetic laws describing the rates at which minerals dissolve and precipitate can be integrated into reaction path and reactive transport simulations. The purpose of this chapter is to consider how we can trace the reaction paths that arise when redox reactions proceed according to kinetic rate laws. [Pg.415]

If the nonlinear character of the kinetic law is more pronounced, and/or if more data points than merely the peak are to be used, the following approach, illustrated in Figure 1.18, may be used. The current-time curves are first integrated so as to obtain the surface concentrations of the two reactants. The current and the surface concentrations are then combined to derive the forward and backward rate constants as functions of the electrode potential. Following this strategy, the form of the dependence of the rate constants on the potential need not be known a priori. It is rather an outcome of the cyclic voltammetric experiments and of their treatment. There is therefore no compulsory need, as often believed, to use for this purpose electrochemical techniques in which the electrode potential is independent of time, or nearly independent of time, as in potential step chronoamperometry and impedance measurements. This is another illustration of the equivalence of the various electrochemical techniques, provided that they are used in comparable time windows. [Pg.48]

Dealing now with reactants moving freely in the solution, diffusion to and from the electrode has to be taken into account together with the kinetic law ... [Pg.50]


See other pages where Kinetic law is mentioned: [Pg.257]    [Pg.35]    [Pg.52]    [Pg.2067]    [Pg.2071]    [Pg.492]    [Pg.805]    [Pg.209]    [Pg.462]    [Pg.384]    [Pg.549]    [Pg.249]    [Pg.131]    [Pg.410]    [Pg.460]    [Pg.477]    [Pg.1530]    [Pg.1542]    [Pg.1542]    [Pg.1543]    [Pg.340]    [Pg.414]    [Pg.94]    [Pg.99]    [Pg.44]    [Pg.50]   
See also in sourсe #XX -- [ Pg.83 , Pg.84 , Pg.85 , Pg.86 , Pg.87 , Pg.143 , Pg.144 , Pg.145 , Pg.146 , Pg.147 , Pg.148 ]

See also in sourсe #XX -- [ Pg.420 ]




SEARCH



Application of Kinetic-Molecular Theory to the Gas Laws

Avogadro’s law kinetic molecular theory

Back to the modes and laws of kinetics

Boyle’s law kinetic-molecular theory and

Charles’s law kinetic-molecular theory and

Chemical kinetics empirical rate laws

Chemical kinetics rate laws

Chemical reactions, kinetics rate laws

Dalton’s law of partial pressures kinetic-molecular theory and

Different kinetic laws

Dimensionless kinetic rate law

Empirical kinetic laws

Example. Fitting a kinetic rate law to time-dependent data

Experimental laws in homogeneous kinetics

First-order kinetic rate law

Gas Laws and Kinetic Theory

Identification of the Kinetic Law

Kinetic Considerations and Reaction Rate Laws

Kinetic Molecular Theory and the Ideal Gas Law

Kinetic Rate Law and Diffusional Flux

Kinetic laws fourth-order

Kinetic laws of open systems with constant concentrations

Kinetic laws third-order

Kinetic parameters/laws

Kinetic rate law

Kinetics first-order rate laws

Kinetics integrated rate laws

Kinetics law in heterogeneous closed systems

Kinetics law in homogeneous closed systems

Kinetics rate laws

Kinetics second-order rate laws

Kinetics, Mechanisms, Rate Laws

Kinetics, chemical differential rate laws

Laws Langmuir kinetics

Laws kinetic equations

Power-law kinetics

Rate laws continued kinetic

The Power Law Kinetics

© 2024 chempedia.info