Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dehydrochlorination catalyst

Postreacted. The serviceability temperature of polystyrene may be increased significantly by hydrogenation of polystyrene before foaming (118). Polystyrene foams can be rendered infusible by alkylating the polymer with mixtures of mono- and dihalomethylated compounds in the presence of dehydrochlorination catalysts (2). [Pg.540]

Attempts have been made to correlate the stabilization properties of organotins with their reactivity toward HC1 (75,76), and the stabilizing effectiveness of bis(4-ketopentyl)tin bis ( isooctyl mercaptoacetate) has been found to be significantly greater than that of the corresponding di-n-butyltin compound (77). This difference was attributed to intramolecular coordination of tin with the C=0 groups of bis(4-ketopentyl)-tin dichloride, an effect that should make this dichloride a weaker dehydrochlorination catalyst than n-Bu2SnCl2 (77). [Pg.322]

C with low conversion (10—15%) to limit dichloroalkane and trichloroalkane formation. Unreacted paraffin is recycled after distillation and the predominant monochloroalkane is dehydrochlorinated at 300°C over a catalyst such as nickel acetate [373-02-4]. The product is a linear, random, primarily internal olefin. [Pg.459]

Ultimately, as the stabilization reactions continue, the metallic salts or soaps are depleted and the by-product metal chlorides result. These metal chlorides are potential Lewis acid catalysts and can greatiy accelerate the undesired dehydrochlorination of PVC. Both zinc chloride and cadmium chloride are particularly strong Lewis acids compared to the weakly acidic organotin chlorides and lead chlorides. This significant complication is effectively dealt with in commercial practice by the co-addition of alkaline-earth soaps or salts, such as calcium stearate or barium stearate, ie, by the use of mixed metal stabilizers. [Pg.546]

At one time, the only commercial route to 2-chloro-1,3-butadiene (chloroprene), the monomer for neoprene, was from acetylene (see Elastomers, synthetic). In the United States, Du Pont operated two plants in which acetylene was dimeri2ed to vinylacetylene with a cuprous chloride catalyst and the vinyl-acetylene reacted with hydrogen chloride to give 2-chloro-1,3-butadiene. This process was replaced in 1970 with a butadiene-based process in which butadiene is chlorinated and dehydrochlorinated to yield the desired product (see Chlorocarbonsandchlorohydrocarbons). [Pg.393]

Chloroprene (qv), 2-chloro-1,3-butadiene, [126-99-8] is produced commercially from butadiene in a three-step process. Butadiene is first chlorinated at 300°C to a 60 40 mixture of the 1,2- and 1,4-dichlorobutene isomers. This mixture is isomeri2ed to the 3,4-dichloro-l-butene with the aid of a Cu—CU2CI2 catalyst followed by dehydrochlorination with base such as NaOH (54). [Pg.342]

Dehydrochlorination of chlorinated derivatives such as 1,1,2-trichloroethane may be carried out with a variety of catalytic materials, including Lewis acids such as aluminum chloride. Refluxing 1,1,2-trichlorethane with aqueous calcium hydroxide or sodium hydroxide produces 1,1-dichloroethylene in good yields (22), although other bases such as magnesium hydroxide have been reported (23). Dehydrochlorination of the 1,1,1-trichloroethane isomer with catalytic amounts of a Lewis acid also yields 1,1-dichloroethylene. Other methods to dehydrochlorinate 1,1,1-trichloroethane include thermal dehydrochlorination (24) and by gas-phase reaction over an alumina catalyst or siUca catalyst (25). [Pg.509]

Dehydrochlorination of 1,1,2-trichloroethane at 500°C in the presence of a copper catalyst gives a different product, ie, cis- and /n7 j -l,2-dichloroethylene. Addition of small amounts of a chlorinating agent, such as chlorine, promotes radical dehydrochlorination in the gas phase through a disproportionation mechanism that results in loss of hydrogen chloride and formation of a double bond. The dehydrochlorination of 1,2-dichloroethane in the presence of chlorine, as shown in equations 19 and 20, is a typical example. [Pg.509]

Oxychlorination. This is an important process for the production of 1,2-dichloroethane which is mainly produced as an intermediate for the production of vinyl chloride. The reaction consists of combining hydrogen chloride, ethylene, and oxygen (air) in the presence of a cupric chloride catalyst to produce 1,2-dichloroethane (eq. 24). The hydrogen chloride produced from thermal dehydrochlorination of 1,2-dichloroethane to produce vinyl chloride (eq. 25) is usually recycled back to the oxychlorination reactor. The oxychlorination process has been reviewed (31). [Pg.509]

Carbon tetrachloride can be reduced to chloroform using a platinum catalyst (10) or zinc and acid. With potassium amalgam and water, carbon tetrachloride can be totally reduced to methane. It is widely employed as an initiator in the dehydrochlorination of chloroethanes at 400—600°C ... [Pg.530]

Ethyl chloride can be dehydrochlorinated to ethylene using alcohoHc potash. Condensation of alcohol with ethyl chloride in this reaction also produces some diethyl ether. Heating to 625°C and subsequent contact with calcium oxide and water at 400—450°C gives ethyl alcohol as the chief product of decomposition. Ethyl chloride yields butane, ethylene, water, and a soHd of unknown composition when heated with metallic magnesium for about six hours in a sealed tube. Ethyl chloride forms regular crystals of a hydrate with water at 0°C (5). Dry ethyl chloride can be used in contact with most common metals in the absence of air up to 200°C. Its oxidation and hydrolysis are slow at ordinary temperatures. Ethyl chloride yields ethyl alcohol, acetaldehyde, and some ethylene in the presence of steam with various catalysts, eg, titanium dioxide and barium chloride. [Pg.2]

Oxychl orin ation of ethylene has become the second important process for 1,2-dichloroethane. The process is usually incorporated into an integrated vinyl chloride plant in which hydrogen chloride, recovered from the dehydrochlorination or cracking of 1,2-dichloroethane to vinyl chloride, is recycled to an oxychl orin a tion unit. The hydrogen chloride by-product is used as the chlorine source in the chlorination of ethylene in the presence of oxygen and copper chloride catalyst ... [Pg.8]

Unreacted 1,1-dichloroethylene exits the reactor as vapor and can be condensed and recycled to the reactor. Product 1,1,1-trichloroethane exits the reactor as a Hquid, along with the Lewis acid catalyst, and can be removed from the catalyst by flash distillation. Selectivity is high however, some dehydrochlorination of the product can occur in the distillation step. [Pg.10]

Dehydrochlorination to Epoxides. The most useful chemical reaction of chlorohydrins is dehydrochlotination to form epoxides (oxkanes). This reaction was first described by Wurtz in 1859 (12) in which ethylene chlorohydria and propylene chlorohydria were treated with aqueous potassium hydroxide [1310-58-3] to form ethylene oxide and propylene oxide, respectively. For many years both of these epoxides were produced industrially by the dehydrochlotination reaction. In the past 40 years, the ethylene oxide process based on chlorohydria has been replaced by the dkect oxidation of ethylene over silver catalysts. However, such epoxides as propylene oxide (qv) and epichl orohydrin are stiU manufactured by processes that involve chlorohydria intermediates. [Pg.72]

A small portion of vinyl chloride is produced from ethane via the Transcat process. In this process a combination of chlorination, oxychlo-rination, and dehydrochlorination reactions occur in a molten salt reactor. The reaction occurs over a copper oxychloride catalyst at a wide temperature range of 310-640°C. During the reaction, the copper oxychloride is converted to copper(I) and copper(II) chlorides, which are air oxidized to regenerate the catalyst. Figure 6-1 is a flow diagram of the Transcat process for producing vinyl chloride from ethane. ... [Pg.171]

Monochloroparaffins in this range may be dehydrochlorinated to the corresponding monoolefms and used as alkylating agents for the production of biodegradable detergents. Alternatively, the monochloroparaffins are used directly to alkylate benzene in presence of a Lewis acid catalyst to produce alkylates for the detergent production. These reactions could be illustrated as follows ... [Pg.184]

PCSs obtained by dehydrochlorination of poly(2-dilorovinyl methyl ketones) catalyze the processes of oxidation and dehydrogenation of alcohols, and the toluene oxidation207. The products of the thermal transformation of PAN are also catalysts for the decomposition of nitrous oxide, for the dehydrogenation of alcohols and cyclohexene274, and for the cis-tnms isomerization of olefins275. Catalytic activity in the decomposition reactions of hydrazine, formic acid, and hydrogen peroxide is also manifested by the products of FVC dehydrochlorination... [Pg.36]

The mechanisms of degradation and the mode of action of the various PVC stabilisers have both been widely studied. Often at least one aspect of their operation is some sort of reaction with the first trace of hydrogen chloride evolved. This removes what would otherwise act as the catalyst for further dehydrochlorination, and hence significantly retards the degradation process. In addition, many stabilisers are themselves capable of reacting across any double bonds formed, thereby reversing the process that causes discoloration and embrittlement. [Pg.11]

These results emphasise the important role played by HC1 not only as a catalyst for the dehydrochlorination process but in influencing the distribution of polyene sequences which result from the primary part of the degradation process and the photochemical cross-linking reactions of the polyenylic cations. [Pg.236]

Oxidative catalysis over metal oxides yields mainly HC1 and C02. Catalysts such as V203 and Cr203 have been used with some success.49 50 In recent years, nanoscale MgO and CaO prepared by a modified aerogel/hypercritical drying procedure (abbreviated as AP-CaO) and AP-MgO, were found to be superior to conventionally prepared (henceforth denoted as CP) CP-CaO, CP-MgO, and commercial CaO/MgO catalysts for the dehydrochlorination of several toxic chlorinated substances.51 52 The interaction of 1-chlorobutane with nanocrystalline MgO at 200 to 350°C results in both stoichiometric and catalytic dehydrochlorination of 1-chlorobutane to isomers of butene and simultaneous topochemical conversion of MgO to MgCl2.53-55 The crystallite sizes in these nanoscale materials are of the order of nanometers ( 4 nm). These oxides are efficient due to the presence of high concentration of low coordinated sites, structural defects on their surface, and high-specific-surface area. [Pg.53]

In this chapter, we have discussed the application of metal oxides as catalysts. Metal oxides display a wide range of properties, from metallic to semiconductor to insulator. Because of the compositional variability and more localized electronic structures than metals, the presence of defects (such as comers, kinks, steps, and coordinatively unsaturated sites) play a very important role in oxide surface chemistry and hence in catalysis. As described, the catalytic reactions also depend on the surface crystallographic structure. The catalytic properties of the oxide surfaces can be explained in terms of Lewis acidity and basicity. The electronegative oxygen atoms accumulate electrons and act as Lewis bases while the metal cations act as Lewis acids. The important applications of metal oxides as catalysts are in processes such as selective oxidation, hydrogenation, oxidative dehydrogenation, and dehydrochlorination and destructive adsorption of chlorocarbons. [Pg.57]

Mochida, I. Yoneda, Y. Dehydrochlorination and dechlorination of chloroethanes on chromia catalyst. [Pg.59]

Devulcanization in the Presence of Benzyl Chloride and Methyl Chloride. The above results suggest that catalyst efficiency might be improved when devulcanization is carried out with added alkylating agent. We find that this is, indeed, the case. Added benzyl chloride or methyl chloride further decreases the crosslink density for a given concentration of catalyst (Table 11). However, 1- and 2-chlorobutanes appear to be ineffective, possibly because of dehydrochlorination. [Pg.161]

Also other Type B and C series from Table II are consistent with the above elimination mechanisms. The dehydration rate of the alcohols ROH on an acid clay (series 16) increased with the calculated inductive effect of the group R. For the dehydrochlorination of polychloroethanes on basic catalysts (series 20), the rate could be correlated with a quantum-chemical reactivity index, namely the delocalizability of the hydrogen atoms by a nucleophilic attack similar indices for a radical or electrophilic attack on the chlorine atoms did not fit the data. The rates of alkylbenzene cracking on silica-alumina catalysts have been correlated with the enthalpies of formation of the corresponding alkylcarbonium ions (series 24). Similar correlations have been obtained for the dehydrosulfidation of alkanethiols and dialkyl sulfides on silica-alumina (series 36 and 37) in these cases, correlation by the Taft equation is also possible. The rate of cracking of 1,1-diarylethanes increased with the increasing basicity of the reactants (series 33). [Pg.169]

The above synthetic methods for oxetane all involve formation of a new C—O bond. Cyclization by formation of a new C—C bond has been applied with compounds having benzylic or alkylic CH groups. Recent examples of this type of ring closure are the rearrangement of trans- 2,3-epoxycyclohexyl allyl ether by means of s-butyllithium and the dehydrochlorination of a-cyanobenzyl 2-chloroethyl ether with aqueous base and phase transfer catalyst (equation 86). Both reactions probably involve carbanion intermediates (76TL2115, 75MIP51300). [Pg.393]

In the production of chloroprene from butadiene, there are three essential steps liquid- or vapour-phase chlorination of butadiene to a mixture of 3,4-dichloro-l-butene and l,4-dichloro-2-butene catalytic isomerization of 1,4-dichloro-2-butene to 3,4-dichloro-l-butene and caustic dehydrochlorination of the 3,4-dichloro-l-butene to chloroprene. By-products in the first step include hydrochloric acid, 1-chloro-1,3-butadiene, trichlorobutenes and tetrachlorobutanes, butadiene dimer and higher-boiling products. In the second step, the mixture of l,4-dichloro-2-butene and 3,4-dichloro-l-butene isolated by distillation is isomerized to pure 3,4-dichloro-l-butene by heating to temperatures of 60-120°C in the presence of a catalyst. Finally, dehydrochlorination of 3,4-dichloro-l-butene with dilute sodium hydroxide in the presence of inhibitors gives crude chloroprene (Kleinschmidt, 1986 Stewart, 1993 DuPont Dow Elastomers, 1997). [Pg.229]

Monohydrides play an important role in the following rhodium-complex-catalyzed hydrogenations in aqueous media. The catalyst precursor is [RhCl(PTA)3], which gives the catalytically active species (HRh(PTA)3] formed by dehydrochlorination of the primary product of H2 oxidative addition (88). The complex is an active catalyst for several reactants, e.g., olefinic and oxo adds, allyl alcohol, and sulfostyrene. [Pg.489]

Commercialization of a new vinyl chloride process has been announced. Instead of the traditional three-step production (see Section 6.3.4), it is based on ethane oxy-chlorination using HC1, 02, and Cl2 carried out over a CuCl-based catalysts.285 Overchlorinated products are dehydrochlorinated and hydrogenated (together with overchlorinated alkenes) in separate reactors these product streams are then led back to the oxychlorination reactor. [Pg.605]

Comparison of the activity of different catalysts for the dehydrochlorination of 1-chlorobutane [174]... [Pg.301]

Order of reactivities in the dehydrochlorination of chloroethanes on different catalysts [186]... [Pg.304]

The influence of temperature on the ratio of the products of the dehydrochlorination of 2-chlorobutane is seen from Fig. 6 [190], Other examples may be found in the literature [190,194,195]. Some ratios are almost temperature-independent while some show large changes. Moreover, the data from various sources differ sometimes appreciably (cf. refs. 190 and 914 for 2-chlorobutane and refs. 66 and 195 for 1,1,2-trichloroethane). This might be caused by secondary isomerisation on strongly acidic catalysts of the olefins first formed such a reaction was proved at... [Pg.305]


See other pages where Dehydrochlorination catalyst is mentioned: [Pg.42]    [Pg.236]    [Pg.42]    [Pg.236]    [Pg.329]    [Pg.545]    [Pg.137]    [Pg.417]    [Pg.10]    [Pg.206]    [Pg.60]    [Pg.177]    [Pg.114]    [Pg.275]    [Pg.170]    [Pg.34]    [Pg.147]    [Pg.61]    [Pg.109]    [Pg.158]    [Pg.260]   
See also in sourсe #XX -- [ Pg.71 ]




SEARCH



Dehydrochlorinated

© 2024 chempedia.info