Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyanohydrins amides

Section 20 18 Nitnles are prepared by nucleophilic substitution (8 2) of alkyl halides with cyanide ion by converting aldehydes or ketones to cyanohydrins (Table 20 6) or by dehydration of amides... [Pg.877]

Selected physical properties of various methacrylate esters, amides, and derivatives are given in Tables 1—4. Tables 3 and 4 describe more commercially available methacrylic acid derivatives. A2eotrope data for MMA are shown in Table 5 (8). The solubiUty of MMA in water at 25°C is 1.5%. Water solubiUty of longer alkyl methacrylates ranges from slight to insoluble. Some functionalized esters such as 2-dimethylaniinoethyl methacrylate are miscible and/or hydrolyze. The solubiUty of 2-hydroxypropyl methacrylate in water at 25°C is 13%. Vapor—Hquid equiUbrium (VLE) data have been pubHshed on methanol, methyl methacrylate, and methacrylic acid pairs (9), as have solubiUty data for this ternary system (10). VLE data are also available for methyl methacrylate, methacrylic acid, methyl a-hydroxyisobutyrate, methanol, and water, which are the critical components obtained in the commercially important acetone cyanohydrin route to methyl methacrylate (11). [Pg.242]

Nitrile Group. Hydrolysis of the nitrile group proceeds through the amide to the corresponding carboxyUc acid. Because cyanohydrins are unstable at high pH, this hydrolysis must be cataly2ed by acids. In cases where amide hydrolysis is slower than nitrile hydrolysis, the amide may be isolated. [Pg.411]

Thus acid hydrolysis of acetophenone cyanohydrin [20102-12-9] (R = CgH, R = CH3) yields the corresponding amide which can be isolated. Further hydrolysis, usually with sodium hydroxide, gives atrolactic acid [575-30-0] in a 30% overall yield (1). [Pg.411]

Reaction of cyanohydrins with absolute ethanol in the presence of HCl yields the ethyl esters of a-hydroxy acids (3). A/-substituted amides can be synthesized by heating a cyanohydrin and an amine in water. Thus formaldehyde cyanohydrin and P-hydroxyethylamine lead to A/- (P-hydroxyethyl)hydroxyacetamide (4). [Pg.411]

Antispasmodic activity, interestingly, is maintained even in the face of the deletion of the ethanolamine ester side chain. Reaction of anisaldehyde with potassium cyanide and dibutylamine hydrochloride affords the corresponding a-aminonitrile (72) (a functionality analogous to a cyanohydrin). Treatment with sulfuric acid hydrolyzes the nitrile to the amide to yield ambucet-amide (73). ... [Pg.94]

In a departure from the prototype molecule, the benzylpiperi-done is first converted to the corresponding aminonitrile (a derivative closely akin to a cyanohydrin) by treatment with aniline hydrochloride and potassium cyanide (126). Acid hydrolysis of the nitrile affords the corresponding amide (127). Treatment with formamide followed by reduction affords the spiro oxazinone... [Pg.306]

A range of amide bases can be employed. Typically LDA is used, but in certain complex cases, LiNEt2 was found to be more effective. One exceptional case involves the ostensibly simple alkylation of a cyanohydrin acetonide with allyl chloride (Eq. 12). Here, use of LDA gave essentially none of the desired product 39, whereas KHMDS or LHMDS gave excellent yields [5]. [Pg.58]

R)- and (S )-cyanohydrins are, respectively, hydrolyzed in hydrochloric acid to give the corresponding (R)- and (5 )-2-hydroxy acids in excellent yields and with complete retention of configuration. Under milder reaction conditions (lower temperature, shorter reaction times), the corresponding 2-hydroxy acid amides can be obtained selectively (Scheme A) ... [Pg.145]

Scheme 4 Stereoselective synthesis of (f )-2-hydroxy acid amides and (7 )-2-hydroxy acids hy hydrolysis of (f )-cyanohydrins. Scheme 4 Stereoselective synthesis of (f )-2-hydroxy acid amides and (7 )-2-hydroxy acids hy hydrolysis of (f )-cyanohydrins.
S (2)-hydroxy-3-butenenitrile from acrolein and HCN trans hydrocyanation using, for instance, acetone cyanohydrin Hydrolysis of nitriles to amides, e.g. acrylonitrile to acrylamide Isomerization of glucose to fructose Esterifications and transesterifications Interesterify positions 1 and 3 of natural glycerides Oxidation of glucose to gluconic acid, glycolic acid to glyoxalic acid... [Pg.158]

The extension of the salt-acid,27 phenylhydrazide,28 and amide rules29 to the derivatives of the 2-(hydroxymethyl) sugars by Schmidt and Weber-Molster30 indicated that the configuration of C2 in hamamelonic acid is the same as that of D-ribonic acid. Finally, the d-ribo configuration of the sugar was established by the synthesis of hamamelonic acid and its C2 epimer from D-ery/ftro-pentulose31 by the cyanohydrin reaction of Fischer and Kiliani. [Pg.270]

An important contribution was recently made by Inoue and co-workers (35) (eq. [4]). Using the chiral cyclic dipeptide cyclo(L-Phe-L-His) these authors obtained a better than 90% e.e. in the reaction of benzaldehyde with cyanide ion. The preparation of the enantiomeric unnatural dipeptide obviously poses far fewer problems than the synthesis of an enantiomeric enzyme. It appears that, at least in principle, optically pure cyanohydrins of the desired configuration are accessible via catalysis by chiral amines or amides. [Pg.95]

Addition of HCN to acetone to form the cyanohydrin is still the main route to methyl methacrylate. Hydrocyanins can be converted to amino acids as well. The nitrile group can be easily converted to amines, carboxylic acids, amides, etc. Addition to aldehydes and activated alkenes can be done with simple base, but addition to unactivated alkenes requires a transition metal catalyst. The methods of HCN addition have been discussed by Brown [2],... [Pg.229]

The ACH process has recently been improved, as stated by Mitsubishi Gas. Acetone-cyanohydrin is first hydrolized to 2-hydroxyisobutylamide with an Mn02 catalyst the amide is then reacted with methylformiate to produce the methyl ester of 2-hydroxyisobutyric acid, with coproduction of formamide (this reaction is catalyzed by Na methoxide). The ester is finally dehydrated with an Na-Y zeolite to methylmethacrylate. Formamide is converted to cyanhydric acid, which is used to produce acetone-cyanohydrin by reaction with acetone. The process is very elegant, since it avoids the coproduction of ammonium bisulphate, and there is no net income of HCN. Problems may derive from the many synthetic steps involved, and from the high energy consumption. [Pg.267]

Olefination of the Aldehyde 178 using a stabilized Wittig reagent followed by protecting group chemistry at the lower branch and reduction of the a,p-unsaturated ester afforded the allylic alcohol 179 (Scheme 29). The allylic alcohol 179 was then converted into an allylic chloride and the hydroxyl function at the lower branch was deprotected and subsequently oxidized to provide the corresponding aldehyde 161 [42]. The aldehyde 161 was treated with trimethylsilyl cyanide to afford the cyanohydrin that was transformed into the cyano acetal 180. The decisive intramolecular alkylation was realized by treatment of the cyano acetal 180 with sodium bis(trimethylsi-lyl)amide. Subsequent treatment of the alkylated cyano acetal 182 with acid (to 183) and base afforded the bicyclo[9.3.0]tetradecane 184. [Pg.109]

Addition of hydrogen cyanide to aldehyde and ketone forms cyanohydrin. The reaction is usually carried out using sodium or potassium cyanide with HCl. Hydrogen cyanide is a toxic volatile liquid, and a weak acid. Therefore, the best way to carry out this reaction is to generate it in situ by adding HCl to a mixture of aldehydes or ketones and excess sodium or potassium cyanide. Cyanohydrins are useful in organic reaction, because the cyano group can be converted easily to an amine, amide or carboxylic acid. [Pg.217]

The use of an optically active RBC12 gave secondary amines of essentially 100% optical purity.363 In other methods, trialkylboranes R3B gave secondary amines RR NH upon treatment with N-chloroamines R NHCl,364 and aryllead triacetates ArPb(OAc)3 give secondary amines ArNHAr when treated with primary aromatic amines Ar NH2 and Cu(OAc)2. s An indirect method for the conversion of aldehydes to N,N-disubstituted amides is based on the conversion of an 0-(trimethylsilyl)aldehyde cyanohydrin 34 to the amine 35.366... [Pg.617]


See other pages where Cyanohydrins amides is mentioned: [Pg.91]    [Pg.5]    [Pg.91]    [Pg.5]    [Pg.217]    [Pg.202]    [Pg.219]    [Pg.150]    [Pg.66]    [Pg.229]    [Pg.17]    [Pg.184]    [Pg.416]    [Pg.367]    [Pg.267]    [Pg.40]    [Pg.238]    [Pg.42]    [Pg.231]    [Pg.9]    [Pg.317]    [Pg.23]    [Pg.202]    [Pg.1079]   
See also in sourсe #XX -- [ Pg.27 , Pg.326 ]




SEARCH



Cyanohydrine

Cyanohydrins

© 2024 chempedia.info