Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Costs gaseous

When considering the possibility of using internal combustion drivers, evaluate process requirements and costs. If a low-cost, gaseous fuel is available, gas engines and gas turbines may surpass other drivers in economical installation and operation. In the initial process design stage, a method of establishing the cost of purchase, installation, and operation for drivers is needed. [Pg.292]

Casiello, F., 1991, NO, Control Techniques, Limitations Costs Gaseous and Liquid Fuels." paper presented at the Council of Industrial Boiler Owners (CIBO) Fourth Annual NO, Control Conference, Concord, CA, Feb. 11-12. [Pg.937]

Incineration. Incinerators were discussed in Sec. 11.1. When incinerators are used to treat gaseous pollutants in relatively low concentration, auxiliary firing from fuel or other waste material normally will be necessary. The capital and operating costs may be high. In addition, long duct lines are often necessary. [Pg.305]

Compressed Ga.s PropeIIa.nts. The compressed gas propellants, so named because they are gaseous in conventional aerosol containers, are nontoxic, nonflammable, low in cost, and very inert. When used in aerosols, however, the pressure in the container drops as the contents are depleted. Although the problem is lessened when the contents are materials in which the propellant is somewhat soluble, this pressure drop may cause changes in the rate and characteristics of the aerosol spray. A compressed gas aerosol system is illustrated in Figure 3. [Pg.347]

Gaseous Effluents. Twenty percent of the carbon disulfide used in xanthation is converted into hydrogen sulfide (or equivalents) by the regeneration reactions. Ninety to 95% of this hydrogen sulfide is recoverable by scmbbers that yield sodium hydrogen sulfide for the tanning or pulp industries, or for conversion back to sulfur. Up to 60% of the carbon disulfide is recyclable by condensation from rich streams, but costly carbon-bed... [Pg.353]

Between 1930 and 1950, the primary emphasis of ammonia process development was ia the area of synthesis gas generation (3) (see Fuels, SYNTHETIC, GASEOUS FUELs). Extensive coal deposits ia Europe provided the feedstock for the ammonia iadustry. The North American ammonia iadustry was based primarily on abundant suppHes of low cost natural gas (see Gas, natural). [Pg.339]

Essential Parameters. Traditionally, all vacuum environments are characterized in terms of one parameter, ie, pressure in the gaseous phase. However, when costs, energy, safety, hazardous wastes, and other requirements are taken into account, each system must be characterized by a host of parameters. Their magnitudes must be deterrnined in order to judge system performance. [Pg.367]

Catalytic Oxidation. Catalytic oxidation is used only for gaseous streams because combustion reactions take place on the surface of the catalyst which otherwise would be covered by soHd material. Common catalysts are palladium [7440-05-3] and platinum [7440-06-4]. Because of the catalytic boost, operating temperatures and residence times are much lower which reduce operating costs. Catalysts in any treatment system are susceptible to poisoning (masking of or interference with the active sites). Catalysts can be poisoned or deactivated by sulfur, bismuth [7440-69-9] phosphoms [7723-14-0] arsenic, antimony, mercury, lead, zinc, tin [7440-31-5] or halogens (notably chlorine) platinum catalysts can tolerate sulfur compounds, but can be poisoned by chlorine. [Pg.168]

A large portion of the carbon dioxide recovered is used at or near the location where it is generated as an ingredient in a further processing step. In this case, the gaseous form is most often used. Low temperature Hquid and soHd carbon dioxide are used for refrigeration. Where the producer and the consumer are distant, carbon dioxide maybe Hquifted to reduce transportation cost and revaporized at the point of consumption. [Pg.24]

The optimum pressure level for gaseous diffusion operation is also determined by comparison at some pressure level the decrease ia equipment size and volume to be expected from increasing the pressure and density is outweighed by the losses that occur ia the barrier efficiency. Nevertheless, because it is weU known that the cost of power constitutes a large part of the total cost of operation of gaseous diffusion plants, it can perhaps be assumed that a practical value of r does not differ gready from the above optimum. Inclusion of this value ia the preceding equations yields... [Pg.87]

Plant Operation and Costs. The operation and economics of the three United States gaseous diffusion plants miming ia 1972 is discussed ia References 29 and 30. These plants were operated as a single gaseous diffusion complex such that iaterplant shipments occurred so as to optimize the overall system. Independent operation of the plants would have resulted ia about a 1% loss ia separative work. [Pg.87]

The cost of enriched material from a gaseous diffusion plant depends both on the cost of separative work and of feed material. It can be seen from equation 15 that if the optimum tails concentration from a gaseous diffusion plant is 0.25%, the ratio of the cost of a kg of normal uranium to the cost of a kg of separative work equal to 0.80 is impfled. Because the cost of separative work in new gaseous diffusion plants is expected to be about 100/SWU, equation 16 gives the cost per kg of uranium containing 4% as about 1,240. [Pg.88]

Although the continuous-countercurrent type of operation has found limited application in the removal of gaseous pollutants from process streams (Tor example, the removal of carbon dioxide and sulfur compounds such as hydrogen sulfide and carbonyl sulfide), by far the most common type of operation presently in use is the fixed-bed adsorber. The relatively high cost of continuously transporting solid particles as required in steady-state operations makes fixed-bed adsorption an attractive, economical alternative. If intermittent or batch operation is practical, a simple one-bed system, cycling alternately between the adsorption and regeneration phases, 1 suffice. [Pg.2187]

If an ESP is 90% efficient for particulate removal, what overall efficiency would you expect for two of the ESPs in series Would the cost of the two in series be double the cost of the single ESP List two specific cases in which you might use two ESPs in series The gaseous effluent from a process is 30 m min at 65°C. How much natural gas at 8900 kg cal m would have to be burned per hour to raise the effluent temperature to 820 "C Natural gas requires 10 m of air for every cubic meter of gas at a theoretical air fuel ratio. Assume the air temperature is 20°C and the radiation and convection Iosm s are 10%. [Pg.488]

In a typical process adiponitrile is formed by the interaction of adipic acid and gaseous ammonia in the presence of a boron phosphate catalyst at 305-350°C. The adiponitrile is purified and then subjected to continuous hydrogenation at 130°C and 4000 Ibf/in (28 MPa) pressure in the presence of excess ammonia and a cobalt catalyst. By-products such as hexamethyleneimine are formed but the quantity produced is minimized by the use of excess ammonia. Pure hexamethylenediamine (boiling point 90-92°C at 14mmHg pressure, melting point 39°C) is obtained by distillation, Hexamethylenediamine is also prepared commercially from butadience. The butadiene feedstock is of relatively low cost but it does use substantial quantities of hydrogen cyanide. The process developed by Du Pont may be given schematically as ... [Pg.481]

Vapor grown carbon fiber (VGCF) is the descriptive name of a class of carbon fiber which is distinctively different from other types of carbon fiber in its method of production, its unique physical characteristics, and the prospect of low cost fabrication. Simply stated, this type of carbon fiber is synthesized from the pyrolysis of hydrocarbons or carbon monoxide in the gaseous state, in the presence of a catalyst in contrast to a melt-spinning process common to other types of carbon fiber. [Pg.139]


See other pages where Costs gaseous is mentioned: [Pg.188]    [Pg.188]    [Pg.1174]    [Pg.250]    [Pg.188]    [Pg.188]    [Pg.1174]    [Pg.250]    [Pg.44]    [Pg.386]    [Pg.402]    [Pg.131]    [Pg.35]    [Pg.37]    [Pg.505]    [Pg.16]    [Pg.388]    [Pg.19]    [Pg.398]    [Pg.75]    [Pg.76]    [Pg.116]    [Pg.17]    [Pg.415]    [Pg.232]    [Pg.237]    [Pg.74]    [Pg.84]    [Pg.85]    [Pg.321]    [Pg.322]    [Pg.296]    [Pg.170]    [Pg.224]    [Pg.234]    [Pg.76]    [Pg.83]    [Pg.1019]    [Pg.76]   
See also in sourсe #XX -- [ Pg.485 ]




SEARCH



Gaseous pollutants costs

© 2024 chempedia.info