Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coordination compounds carbonyls

Carbon monoxide [630-08-0] (qv), CO, the most important 7T-acceptor ligand, forms a host of neutral, anionic, and cationic transition-metal complexes. There is at least one known type of carbonyl derivative for every transition metal, as well as evidence supporting the existence of the carbonyls of some lanthanides (qv) and actinides (1) (see AcTINIDES AND THANSACTINIDES COORDINATION COMPOUNDS). [Pg.62]

Whereas this reaction was used to oxidize ethylene (qv) to acetaldehyde (qv), which in turn was oxidized to acetic acid, the direct carbonylation of methanol (qv) to acetic acid has largely replaced the Wacker process industrially (see Acetic acid and derivatives). A large number of other oxidation reactions of hydrocarbons by oxygen involve coordination compounds as detailed elsewhere (25). [Pg.171]

The stereospecific polymerization of alkenes is catalyzed by coordination compounds such as Ziegler-Natta catalysts, which are heterogeneous TiCl —AI alkyl complexes. Cobalt carbonyl is a catalyst for the polymerization of monoepoxides several rhodium and iridium coordination compounds... [Pg.171]

Polymerization of olefins such as styrene is promoted by acid or base or sodium catalysts, and polyethylene is made with homogeneous peroxides. Condensation polymerization is catalyzed by acid-type catalysts such as metal oxides and sulfonic acids. Addition polymerization is used mainly for olefins, diolefins, and some carbonyl compounds. For these processes, initiators are coordination compounds such as Ziegler-type catalysts, of which halides of transition metals Ti, V, Mo, and W are important examples. [Pg.2095]

Macrocyclic coordination compounds formed bv condensation of metal amine complexes with aliphatic carbonyl compounds. N. F. Curtis, Coord. Chem. Rev., 1968, 3, 3-47 (78). [Pg.35]

A closely related method does not require conversion of enantiomers to diastereomers but relies on the fact that (in principle, at least) enantiomers have different NMR spectra in a chiral solvent, or when mixed with a chiral molecule (in which case transient diastereomeric species may form). In such cases, the peaks may be separated enough to permit the proportions of enantiomers to be determined from their intensities. Another variation, which gives better results in many cases, is to use an achiral solvent but with the addition of a chiral lanthanide shift reagent such as tris[3-trifiuoroacetyl-Lanthanide shift reagents have the property of spreading NMR peaks of compounds with which they can form coordination compounds, for examples, alcohols, carbonyl compounds, amines, and so on. Chiral lanthanide shift reagents shift the peaks of the two enantiomers of many such compounds to different extents. [Pg.156]

NMR measurements also provide information on the coordination of the ligands in the uranyl polymers. Solid-state I c-NMR confirms the coordination modes of the carboxylate ligands to the uranyl ion that is, both monodentate and bidentate carboxylate coordination modes are evident. The uranyl dicarboxyl ate polymers which possess two moles of coordinated DMSO exhibit two carbon-13 carbonyl resonances, one at about 175 ppm downfield from tetramethylsilane (TMS) and one at about 185 ppm. The polymers which possess only one mole of coordinated DMSO exhibit only the carbonyl peak near 185 ppm. Based on other known coordination compounds, the 175 ppm peak can be assigned to monodentate carboxylate and the 185 ppm peak to bidentate carboxylate. Thus, 7-coordination predominates in the polymers with either one or two moles of solvent coordinated to the uranyl ion, which is consistent with the infrared results reported elsewhere (5). [Pg.467]

Coordination compounds of d10, diamagnetic, Ir(-I) are very rare and are almost always synthesized via reduction of the parent Ir1 ds complex. The synthesis, characterization, and chemical properties of highly reduced metal carbonyl anions, including Ir, have been reviewed by Ellis in 1990.752... [Pg.231]

Ihmels H, Otto D (2005) Intercalation of Organic Dye Molecules into Double-Stranded DNA - General Principles and Recent Developments. 258 161-204 lida H, Krische MJ (2007) Catalytic Reductive Coupling of Alkenes and Alkynes to Carbonyl Compounds and Imines Mediated by Hydrogen. 279 77-104 Imai H (2007) Self-Organized Formation of Hierarchical Structures. 270 43-72 Indelli MT, Chiorboli C, Scandola F (2007) Photochemistry and Photophysics of Coordination Compounds Rhodium. 280 215-255 Indelli MT, see Chiorboli C (2005) 257 63-102 Inoue Y, see Borovkov VV (2006) 265 89-146 Ishii A, Nakayama J (2005) Carbodithioic Acid Esters. 251 181-225... [Pg.220]

The chemistry of rhenium(I) is dominated by organometallic compounds which are not covered by this review. Thus, cyclopentadienyl and related compounds, where the organometallic part of the molecule dominate the properties will generally not be considered. Nevertheless, compounds with carbonyl or isocyanide co-ligands will be treated when they can be regarded as constituents of a typical coordination compound or the compounds are of fundamental interest in a radiopharmaceutical context such as the hexakis(isocyanide)rhenium(I) cations. For the same reason a separate section has been included which gives a brief summary of recent attempts to develop synthetic routes to tiicarbonylrhenium(I) complexes for nuclear medical applications. [Pg.353]

Another example of a Bill compound is offered by the ligand VAPOL ( vaulted bisphenanthrol), which combines with AICI3 to form a three-coordinate complex, with no dative interactions. This compound will catalyze Diels-Alder reactions [64]. A five-coordinate compound, with two dative carbonyl bonds attached to the aluminum, has been postulated as the active intermediate in the catalytic reaction. [Pg.185]

Knowing all these facts, especially the difficult access to fluorophosphines and the poor donating abilities of phosphorus trifluoride (5, 6), we decided to use another approach, which readily led to a number of coordination compounds with fluorophosphine ligands—namely, the fluorination of chlorophosphines already coordinated to the transition metal, where the 3s electrons of phosphorus are blocked by the complex formation. There was no reaction between elemental nickel and phosphorus trifluoride, even under extreme conditions, whereas the exchange of carbon monoxide in nickel carbonyl upon interaction with phosphorus trifluoride proceeded very slowly and even after 100 hours interaction did not lead to a well defined product (5,6). [Pg.156]

At the time of our investigation the only known coordination compounds of chlorophosphines (aside from phosphorus trichloride complexes) were the nickel-(0) compounds, tetrakis(methyldichlorophosphine)nickel-(0) (20) and tetrakis-phenyldichlorophosphine) nickel- (0) (17). Tetrakis (methyldichlorophosphine) -nickel-(0) is noteworthy in that it represents a still rare example of the direct reaction of a ligand with an elemental transition metal to give a complex, while tetrakis (phenyldichlorophosphine) nickel- (0), like tetrakis (trichlorophosphine) -nickel-(0), was obtained readily via the carbonyl. AD chlorophosphine-nickel-(O) complexes, including the phosphorus trichloride complex, Ni(PCl3)4, are compounds relatively stable in the atmosphere, but show poor stability in almost any organic solvent, even under strictly anaerobic conditions. [Pg.156]

Compounds containing niobium or tantalum in negative formal oxidation states -I and -III are mainly metal carbonyl anions. Although these are organometallic derivatives, the report of efficient procedures for the synthesis of [M(CO)6] since the review of Labinger8 merits mention, as it can be anticipated that these highly reduced and reactive species will be important precursors of a large variety of new coordination compounds and metal clusters. [Pg.684]


See other pages where Coordination compounds carbonyls is mentioned: [Pg.712]    [Pg.433]    [Pg.324]    [Pg.335]    [Pg.53]    [Pg.74]    [Pg.74]    [Pg.171]    [Pg.172]    [Pg.242]    [Pg.512]    [Pg.26]    [Pg.86]    [Pg.194]    [Pg.129]    [Pg.739]    [Pg.246]    [Pg.276]    [Pg.119]    [Pg.618]    [Pg.719]    [Pg.130]    [Pg.198]    [Pg.230]    [Pg.170]    [Pg.226]    [Pg.260]    [Pg.173]    [Pg.140]    [Pg.10]    [Pg.24]    [Pg.158]    [Pg.158]    [Pg.118]    [Pg.190]   
See also in sourсe #XX -- [ Pg.262 , Pg.263 ]

See also in sourсe #XX -- [ Pg.262 , Pg.263 ]




SEARCH



Carbonyl compounds coordinated

Carbonyl compounds coordinated

© 2024 chempedia.info