Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cooling pressing

Thermoplastic urethane adhesives may be processed into an adhesive film. I,amination of two substrates can, in theory, be done immediately, but the film is often extruded onto one substrate, covered by a release liner, and allowed to cool. Crystallization follows to create a non-tacky film that may be cut into specific shapes. The release liner is then removed, and the shaped adhesive can be heat-activated on one substrate, using infrared lamps. The second substrate is then nipped under pressure, followed by a cooling press to speed crystallization. Once the backbone has crystallized, the bond should be strong. [Pg.793]

Before testing, the samples were compression molded, usually at 10°F above the milling temperature, using a cycle with a five-minute preheat and three minutes at a pressure of 40,000 pounds ram force. Specimens were then transferred to a cooling press and cooled under pressure. [Pg.138]

Meanwhile melt some paraffine and when the bottle is warm enough not to be cracked by the hot paraffine, pour out the water and pour in the paraffine slowly until it about fills the neck of the bottle. As it cools, press it around the tubes and where the glass and paraffine meet. When cold, pour water into the bottle to detect any leak. If the apparatus is not tight, add more paraffine. It.may be necessary to adjust the position of the platinum strips when the test tubes, C and D, are lowered into the bottle. The electrolysis is accomplished the same as in Exp. 38. A is nearly filled with water containing 10 per cent of sulphuric acid, C 3.r)d D are filled with the same solution and clamped over the platinum strips as shown in Fig. 42. When one tube is full of gas, the current is stopped, the volume measured as in Exp. 38, and each gas is tested with a lighted taper or blazing stick of wood. [Pg.85]

Considerable frictional heat is generated that must be removed to achieve low residual oil and prevent damage to the cake and oil. Some screw presses recycle cooled pressed oil over the cage to remove the heat, while others use water-cooled shafts and bar cages. [Pg.354]

Microscopy. Thin films (1-2 mils) were pressed at 150 C using a Pasedena press fitted with West SCR controllers. Typically, a small sample was placed between Teflon coated aluminum foil sheets, preheated for 30 sec, and held at 25, 000 lb. gauge load for 5 min. Samples were then rapidly transferred to a cooling press and held at 25, 000 lb. gauge load for 5 min. [Pg.70]

Hydrolysis is normally the first step in production. - Saponification is nowadays of minor importance. Unsaturated acids may be converted to saturated acids by ->hydrogenation before or after - splitting or are separated by cooling, pressing and filtering (- winterization) or other - crystallization processes. [Pg.278]

The oxime is freely soluble in water and in most organic liquids. Recrystallise the crude dry product from a minimum of 60-80 petrol or (less suitably) cyclohexane for this purpose first determine approximately, by means of a small-scale test-tube experiment, the minimum proportion of the hot solvent required to dissolve the oxime from about 0-5 g. of the crude material. Then place the bulk of the crude product in a small (100 ml.) round-bottomed or conical flask fitted with a reflux water-condenser, add the required amount of the solvent and boil the mixture on a water-bath. Then turn out the gas, and quickly filter the hot mixture through a fluted filter-paper into a conical flask the sodium chloride remains on the filter, whilst the filtrate on cooling in ice-water deposits the acetoxime as colourless crystals. These, when filtered anddried (either by pressing between drying-paper or by placing in an atmospheric desiccator) have m.p. 60 . Acetoxime sublimes rather readily when exposed to the air, and rapidly when warmed or when placed in a vacuum. Hence the necessity for an atmospheric desiccator for drying purposes. [Pg.94]

For the latter purpose, dissolve the crystals in hot ethanol, and then add water drop by drop to the well-stirred solution until a line emulsion just appears then add more ethanol, also drop by drop, until the emulsion just redissolves. ow allow the solution to cool spontaneousK if the emulsion reappears, add a few drops of ethanol from time to time in order to keep the solution clear. Finally the o-nitrophenol separates in crystals, and the well-stirred mixture may now be cooled in ieewvater until crystallisation is complete. Filter, drain and diy either in an atmospheric desiccator, or by pressing between drying-paper. [Pg.172]

Fit securely to the lower end of the condenser (as a receiver) a Buchner flask, the side-tube carrying a piece of rubber tubing which falls well below the level of the bench. Steam-distil the ethereal mixture for about 30 minutes discard the distillate, which contains the ether, possibly a trace of unchanged ethyl benzoate, and also any biphenyl, CeHs CgHs, which has been formed. The residue in the flask contains the triphenyl carbinol, which solidifies when the liquid is cooled. Filter this residual product at the pump, wash the triphenyl-carbinol thoroughly with water, drain, and then dry by pressing between several layers of thick drying-paper. Yield of crude dry product, 8 g. The triphenyl-carbinol can be recrystallised from methylated spirit (yield, 6 g.), or, if quite dry, from benzene, and so obtained as colourless crystals, m.p. 162. ... [Pg.285]

Cuprous bromide. The solid salt may be prepared by dissolving 150 g. of copper sulphate crystals and 87 5 g. of sodium bromide dihydrate in 500 ml. of warm water, and then adding 38 g. of powdered sodium sulphite over a period of 5-10 minutes to the stirred solution. If the blue colour is not completely discharged, a little more sodium sulphite should be added. The mixture is then cooled, the precipitate is collected in a Buchner funnel, washed twice with water containing a little dissolved sulphurous acid, pressed with a glass stopper to remove most of the liquid, and then dried in an evaporating dish or in an air oven at 100 120°. The yield is about 80 g. [Pg.191]

The acetamide often contains a minute amount of impurity having an odour resembling mice excrement this can be removed by washing with a small volume of a 10 per cent, solution of ethyl alcohol in ether or by recrystallLsation. Dissolve 5 g. of impure acetamide in a mixture of 5 ml. of benzene and 1 5 ml. of dry ethyl acetate warm on a water bath until all is dissolved and cool rapidly in ice or cold water. Filter oflF the crystals, press between Alter paper and dry in a desiccator. The unpleasant odour is absent and the pure acetamide melts at 81°. Beautiful large crystals may be obtained by dissolving the acetamide (5 g.) in warm methyl alcohol (4 ml.), adding ether (40 ml.) and allowing to stand. [Pg.402]

Introduce 197 g. of anhydrous brucine or 215 g. of the air-dried dihydrate (4) into a warm solution of 139 g. of dZ-acc.-octyl hj drogen phthalate in 300 ml. of acetone and warm the mixture vmder reflux on a water bath until the solution is clear. Upon cooling, the brucine salt (dA, IB) separates as a crystalline solid. Filter this off on a sintered glass funnel, press it well to remove mother liquor, and wash it in the funnel with 125 ml. of acetone. Set the combined filtrate and washings (W) aside. Cover the crystals with acetone and add, slowly and with stirriug, a slight excess (to Congo red) of dilute hydrochloric acid (1 1 by volume about 60 ml.) if the solution becomes turbid before the introduction of... [Pg.506]

Picrates are usually prepared by mixing solutions of equivalent quantities of the two components in the minimum volume of rectified spirit and allowing to cool the derivative separates in a crystalline condition. It is filtered off, washed with a little ether, and pressed on a porous tUe. If the picrate is stable, it is recrystaUised from alcohol, ethyl acetate or ether. [Pg.518]

To isolate pure p-dibromobenzene, filter the second portion of the steam distillate through a small Buchner funnel with suction press the crystals as dry as possible. Combine these crystals with the residue (R) and recrystaliise from hot ethyl alcohol (for experimental details, see Section IV,12) with the addition of 1-2 g. of decolourising charcoal use about 4 ml. of alcohol (methylated spirit) for each gram of material. Filter the hot solution through a fluted filter paper, cool in ice, and filter the crystals at the pump. The yield of p-dibromobenzene, m.p. 89°, is about 12 g. [Pg.536]

Diphenyinitrosamine. Dissolve 8-5 g. of pure diphenylamine in 70 ml. of warm alcohol also 4 g. of sodium nitrite in 6 ml. of water. Cool each solution in ice until the temperature falls to 5°. Add 6 ml. of concentrated hydrochloric acid slowly and with stirring to the diphenylamine solution, and immediately (otherwise diphenylamine hydrochloride may crystallise out) pour the sodium nitrite solution rapidly into the well-stirred mixture. The temperature soon rises to 20-25° and the diphenyinitrosamine crystallises out. Cool the mixture in ice water for 15-20 minutes, filter with suction on a Buchner funnel, wash with water to remove sodium chloride, and press well with a wide glass stopper. Re-crystaUise from methylated spirit (for details, see Section IV,12). The yield of pure diphenyinitrosamine (pale yellow crystals), m.p. 68°, is 8- 5 g. [Pg.572]

In a 500 ml. bolt-head flask, provided with a mechanical stirrer, place 70 ml. of oleum (20 per cent. SO3) and heat it in an oil bath to 70°. By means of a separatory funnel, supported so that the stem is just above the surface of the acid, introduce 41 g. (34 ml.) of nitrobenzene slowly and at such a rate that the temperature of the well-stirred mixture does not rise above 100-105°. When all the nitrobenzene has been introduced, continue the heating at 110-115° for 30 minutes. Remove a test portion and add it to the excess of water. If the odour of nitrobenzene is still apparent, add a further 10 ml. of fuming sulphuric acid, and heat at 110-115° for 15 minutes the reaction mixture should then be free from nitrobenzene. Allow the mixture to cool and pour it with good mechanical stirring on to 200 g. of finely-crushed ice contained in a beaker. AU the nitrobenzenesulphonic acid passes into solution if a little sulphone is present, remove this by filtration. Stir the solution mechanically and add 70 g. of sodium chloride in small portions the sodium salt of m-nitro-benzenesulphonic acid separates as a pasty mass. Continue the stirring for about 30 minutes, allow to stand overnight, filter and press the cake well. The latter will retain sufficient acid to render unnecessary the addition of acid in the subsequent reduction with iron. Spread upon filter paper to dry partially. [Pg.589]


See other pages where Cooling pressing is mentioned: [Pg.804]    [Pg.426]    [Pg.4714]    [Pg.426]    [Pg.4713]    [Pg.672]    [Pg.804]    [Pg.426]    [Pg.4714]    [Pg.426]    [Pg.4713]    [Pg.672]    [Pg.111]    [Pg.112]    [Pg.150]    [Pg.180]    [Pg.194]    [Pg.260]    [Pg.289]    [Pg.438]    [Pg.28]    [Pg.164]    [Pg.232]    [Pg.233]    [Pg.281]    [Pg.321]    [Pg.526]    [Pg.541]    [Pg.549]    [Pg.550]    [Pg.551]    [Pg.568]    [Pg.572]    [Pg.579]    [Pg.586]    [Pg.608]    [Pg.623]    [Pg.636]    [Pg.756]   
See also in sourсe #XX -- [ Pg.284 , Pg.286 ]




SEARCH



Cooling belt press

© 2024 chempedia.info