Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cooling patents

Apporatus for Blaiting Cool, patented by Davis et al, consists of a pressure-resistant metal tube, the end of which is sealed by a rupture disk for releasing the gas pressure at the desired value. The tube contains a chge of gas-generating expl, such as AN + starch, with a nichrome elec heater embedded in it. [Pg.474]

Osmium s voice In the original patent a continuous, 27 hours extraction with hot toluene was used. This is very impractical. I recommend the following after extraction and removal of the ex traction solvent, dissolve the crude product in 400 - 450 ml hot toluene, put that solution in a beaker and cool it for at least 2 hours in an ice bath. Filter the precipitated product, wash with about 100 ml ice-cold toluene ahd dry at 70°C or in a desiccator to constant weight. Mp. 132.5-134.0°C.]... [Pg.174]

Several recent patents describe improvements in the basic belt process. In one case a higher soHds polymerization is achieved by cooling the starting monomer until some monomer crystallizes and then introducing the resulting monomer slurry onto the belt as above. The latent heat of fusion of the monomer crystals absorbs some of the heat of polymerization, which otherwise limits the soHds content of the polymerization (87). In another patent a concave belt is described which becomes flat near the end. This change leads to improved release of polymer (88). [Pg.142]

In 1954 the surface fluorination of polyethylene sheets by using a soHd CO2 cooled heat sink was patented (44). Later patents covered the fluorination of PVC (45) and polyethylene bottles (46). Studies of surface fluorination of polymer films have been reported (47). The fluorination of polyethylene powder was described (48) as a fiery intense reaction, which was finally controlled by dilution with an inert gas at reduced pressures. Direct fluorination of polymers was achieved in 1970 (8,49). More recently, surface fluorinations of poly(vinyl fluoride), polycarbonates, polystyrene, and poly(methyl methacrylate), and the surface fluorination of containers have been described (50,51). Partially fluorinated poly(ethylene terephthalate) and polyamides such as nylon have excellent soil release properties as well as high wettabiUty (52,53). The most advanced direct fluorination technology in the area of single-compound synthesis and synthesis of high performance fluids is currently practiced by 3M Co. of St. Paul, Minnesota, and by Exfluor Research Corp. of Austin, Texas. [Pg.278]

The patent Hterature indicates that the AUiedSignal process uses lower boiling solvents such as chlorofluorocarbons as the cooling/extraction baths (16), whereas the processes of Stamicarbon indicate the use of decalin solvent followed by cooling and slow removal of the decalin in successively hotter chambers while stretching (17). [Pg.68]

A strain of thermophilic Acetobacter - 9. patented in Japan for oxidizing ethanol in a submerged culture oxidizer at temperatures as high as 37°C with considerable savings in cooling water. Another theimophilic strain oiyAcetobacter xn.2An.. 2cm.ed full activity at 35°C, and 45% of its maximum activity at 38°C. [Pg.409]

Metafile arsenic can be obtained by the direct smelting of the minerals arsenopyrite or loeUingite. The arsenic vapor is sublimed when these minerals are heated to about 650—700°C in the absence of air. The metal can also be prepared commercially by the reduction of arsenic trioxide with charcoal. The oxide and charcoal are mixed and placed into a horizontal steel retort jacketed with fire-brick which is then gas-fired. The reduced arsenic vapor is collected in a water-cooled condenser (5). In a process used by Bofiden Aktiebolag (6), the steel retort, heated to 700—800°C in an electric furnace, is equipped with a demountable air-cooled condenser. The off-gases are cleaned in a sembber system. The yield of metallic arsenic from the reduction of arsenic trioxide with carbon and carbon monoxide has been studied (7) and a process has been patented describing the gaseous reduction of arsenic trioxide to metal (8). [Pg.327]

There are two commercial solvent crystaUi2ation processes. The Emersol Process, patented in 1942 by Emery Industries, uses methanol as solvent and the Armour-Texaco Process, patented in 1948, uses acetone as solvent. The fatty acids to be separated are dissolved in the solvent and cooled, usually in a double-pipe chiller. Internal scrapers rotating at low rpm remove the crystals from the chilled surface. The slurry is then separated by means of a rotary vacuum filter. The filter cake is sprayed with cold solvent to remove free Hquid acids, and the solvents are removed by flash evaporation and steam stripping and recovered for reuse (10). [Pg.90]

Sodium cyanide [143-33-9] NaCN, is a white cubic crystalline soHd commonly called white cyanide. It was first prepared in 1834 by heating Pmssian blue, a mixture of cyanogen compounds of iron, and sodium carbonate and extracting sodium cyanide from the cooled mixture using alcohol. Sodium cyanide remained a laboratory curiosity until 1887, when a process was patented for the extraction of gold and silver from ores by means of a dilute solution of cyanide (see Metallurgy, extractive). A mixture of sodium and potassium cyanides, produced by Edenmeyer s improvement of the Rodgers process, was marketed in 1890. [Pg.381]

Several patents exist on carrying out exothermic reactions for manufacture of reactive intermediates where high selectivity is essential. Even this author has a patent to make ethylene oxide in a transport line reactor (Berty 1959). Yet no fluidized bed technology is in use today. Mostly fixed bed, cooled tubular reactors are used for that purpose. [Pg.183]

Bad-kasten, m. (electrolytic) cell, -nitrieren, n. Metal.) fused-salt nitriding, -patentieren, n. Wire) patenting with cooling in a lead or salt bath, -spannung, /. bath tension, cell voltage, -Spiegel, m, bath level, bath surface, -zementieren, n. Metal.) bath cementation, liquid carburizing,... [Pg.55]

Then, as described in U.S. Patent 2,55416, the 2-acetylamido-5-mercapto-1,3,4-thiadiazole is converted to the sulfonyl chloride by passing chlorine gas into a cooled (5°-10°C) solution in 33% acetic acid (66 parts to 4 parts of mercapto compound) used as a reaction medium. Chlorine treatment is continued for two hours. The crude product can be dried and purified by recrystallization from ethylene chloride. The pure compound is a white crystalline solid, MP l94°C,with decomposition, when heated rapidly. The crude damp sulfonyl chloride is converted to the sulfonamide by addition to a large excess of liquid ammonia. The product is purified by recrystallization from water. The pure compound is a white, crystalline solid, MP 259°C, with decomposition. The yield of sulfonamide was 85% of theory based on mercapto compound. [Pg.16]

As described in U.S. Patent 2,731,492, a glass-lined reactor of 1,500 gallons capacity, fitted with a water-cooled reflux condenser, thermometers with automatic temperature registers and an efficient agitator, is employed. [Pg.107]

Alternatively, as described in U.S. Patent 3,341,557, 6-dehydro-17-methyltestosterone may be used as the starting material. A mixture of 0.4 g of cuprous chloride, 20 ml of 4 M methylmagnesium bromide in ether and 60 ml of redistilled tetrahydrofuran was stirred and cooled in an ice bath during the addition of a mixture of 2.0 g of 6-dehydro-l 7-methyl-testosterone, 60 ml of redistilled tetrahydrofuran and 0.2 g of cuprous chloride. The ice bath was removed and stirring was continued for four hours. Ice and water were then carefully added, the solution acidified with 3N hydrochloric acid and extracted several times with ether. The combined ether extracts were washed with a brine-sodium carbonate solution, brine and then dried over anhydrous magnesium sulfate, filtered and then poured over a 75-g column of magnesium silicate (Florisil) packed wet with hexanes (Skellysolve B). The column was eluted with 250 ml of hexanes, 0.5 liter of 2% acetone, two liters of 4% acetone and 3.5 liters of 6% acetone in hexanes. [Pg.220]

The following procedure is described in U.S. Patent 3,475,407. A solution of 50 g of lincomycin hydrochloride, 120 g of triphenylphosphine, and 500 ml of acetonitrile in a 3 liter flask equipped with a stirrer was cooled in an ice bath and 500 ml of carbon tetrachloride was added in one portion. The reaction mixture was then stirred for 18 hours without addition of ice to the cooling bath. The reaction was evaporated to dryness under vacuum on a 50° to 60°C water bath, yielding a clear, pale yellow viscous oil. An equal volume of water was added and the mixture shaken until all of the oil was dissolved. The resulting suspension of white solid (03PO) was filtered through a sintered glass mat and discarded. The filtrate was adjusted to pH 11 by addition of 6N aqueous sodium hydroxide. A solid precipitated. [Pg.358]

The following description is taken from U.S. Patent 3,116,203. A stirred solution of 75 g of 2-amino.2 -nitrobenzophenone in 700 ml of hot concentrated hydrochloric acid was cooled to 0°C and a solution of 21.5 g of sodium nitrite in 50 ml of water was added in the course of 3 hours. The temperature of the suspension was kept at 2° to 7°C during the addition. The resulting clear solution was poured into a stirred solution of 37 g of cuprous chloride in 350 ml of hydrochloric acid 1 1. The solid which had formed after a few minutes was filtered off, washed with water and recrystallized from ethanol. Crystals of 2-chloro-2 -nitrobenzophenone melting at 76° to 79°C were obtained. [Pg.371]


See other pages where Cooling patents is mentioned: [Pg.11]    [Pg.11]    [Pg.142]    [Pg.290]    [Pg.475]    [Pg.42]    [Pg.451]    [Pg.46]    [Pg.238]    [Pg.1]    [Pg.241]    [Pg.344]    [Pg.82]    [Pg.82]    [Pg.85]    [Pg.174]    [Pg.187]    [Pg.188]    [Pg.115]    [Pg.482]    [Pg.80]    [Pg.409]    [Pg.1059]    [Pg.1091]    [Pg.1094]    [Pg.535]    [Pg.287]    [Pg.113]    [Pg.283]    [Pg.16]    [Pg.69]    [Pg.158]    [Pg.158]    [Pg.191]   
See also in sourсe #XX -- [ Pg.338 ]




SEARCH



© 2024 chempedia.info