Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cooling natural draft

Fig. 9. Natural-draft cooling tower (a) general tower drawing for countercurrent air—water dow arrangement (b) sectional drawing showing arrangement... Fig. 9. Natural-draft cooling tower (a) general tower drawing for countercurrent air—water dow arrangement (b) sectional drawing showing arrangement...
Natural-draft cooling towers are extremely sensitive to air-inlet conditions owing to the effects on draft. It can rapidly be estabUshed from these approximate equations that as the air-inlet temperature approaches the water-inlet temperature, the allowable heat load decreases rapidly. For this reason, natural-draft towers are unsuitable in many regions of the United States. Figure 10 shows the effect of air-inlet temperature on the allowable heat load of a natural-draft tower for some arbitrary numerical values and inlet rh of 50%. The trend is typical. [Pg.105]

Cooling-Tower Plumes. An important consideration in the acceptabiHty of either a mechanical-draft or a natural-draft tower cooling system is the effect on the environment. The plume emitted by a cooling tower is seen by the surrounding community and can lead to trouble if it is a source of severe ground fog under some atmospheric conditions. The natural-draft tower is much less likely to produce fogging than is the mechanical-draft tower. Nonetheless, it is desirable to devise techniques for predicting plume trajectory and attenuation. [Pg.105]

J. R. Singham, The Thermal Peformance of Natural Draft Cooling Towers, Imperial CoUege of Science and Technology, Department of Mechanical Engineering, London, 1967. [Pg.107]

FIG. 12-22 Universal performance chart for natural-draft cooling towers. (Risk and Steel, ASCE Symposium on Thermal Power Plants, October 1958. )... [Pg.1170]

Cooling towers are broadly classified on the basis of the type of draft natural draft (natural convection), mechanical draft (forced convection) and mechanical and natural. Further distinction is made based on (1) the type of flow i.e. - crossflow, counterflow, cocurrent flow (2) the type of heat dissipation-wet (evaporative cooling), dry, wet-dry and (3) the type of application-industrial or power plant. Each of the major types of cooling towers has a distinct configuration. The major designs are summarized in Figures 1 through 8 and a brief description of each follows. [Pg.70]

A large natural-draft cooling tower collapsed in a 70-mph (110-km/hr) v/ind, probably due to imperfections in the shape of the tower, which led to stresses greater than those it was designed to take and caused bending collapse [10]. [Pg.221]

Gas-Fired water heaters are also made more efficient by a variety of designs that increase the recov-ei y efficiency. These can be better flue baffles multiple, smaller-diameter flues submerged combustion chambers and improved combustion chamber geometry. All of these methods increase the heat transfer from the flame and flue gases to the water in the tank. Because natural draft systems rely on the buoyancy of combustion products, there is a limit to the recovery efficiency. If too much heat is removed from the flue gases, the water heater won t vent properly. Another problem, if the flue gases are too cool, is that the water vapor in the combustion products will condense in the venting system. This will lead to corrosion in the chimney and possible safety problems. [Pg.1217]

This tower depends upon natural draft action the same as a chimney to draw cool air in at the bottom and expel it out the top as warm moist air (Figure 9-101). The action of the tower depends upon the atmospheric temperature therefore, on a hot day the action of the tower may be less than on a cool day. These towers are relatively large, and require power for pumping the water to a point in the tower which is usually lower than for an atmospheric tower. There are no fan costs. Units have been built 310 ft high, base diameter 210 ft and a throat of 120 ft, wdening to 134 ft in diameter at the top [30]. [Pg.380]

Figure 9-101. Component parts of modem natural draft tower. Used by permission of Hamon Cooling Towers, Inc. Figure 9-101. Component parts of modem natural draft tower. Used by permission of Hamon Cooling Towers, Inc.
The economics of forced and induced draft cooling tower operation require a study of fan and water pump horsepower and usually dictate a fan static pressure requirement not to exceed 0.75-1.0 in. of water. For atmospheric and natural draft towers the economics of pumping water are still very important. This means that the ground area must be so selected as to keep the height dovm while not dropping the unit rates so low that performance becomes poor. This then, is a balance of ground area versus total deck height. Pritchard [16] presents an... [Pg.391]

Most burners are efficient at high fire but less so at intermediate rates and particularly at low fire. An on/off burner is therefore apparently efficient from an energy-utilization viewpoint. However, when the burner is called on to fire, in the case of forced-draft burners a purge is usually necessary which will both cool down the process and cause a delay in response, and in the case of natural draft there will be heat losses due to ventilation in the off period. [Pg.279]

Having selected and purchased a cooling tower, it needs regular maintenance, as does any other part of the plant. This is true of every cooling tower, from the largest natural-draft tower to the smallest packaged unit. [Pg.530]

Perhaps the most common environmental requirement in modem cooling tower installations is that of noise. The fan equipment and the falling water generate cooling tower noise. In large mechanical- or natural-draft cooling... [Pg.533]

Natural draft. Natural draft cooling towers consist of an empty shell, usually constructed in concrete. The upper, empty portion of the shell merely serves to increase the draft. The lower portion is fitted with the packing. The draft is created by the difference in density between the warm humid air within the tower and the denser ambient air. [Pg.514]

The fill material in natural draft cooling towers is frequently asbestos cement. Erosion of this fill material may result in the discharge of asbestos in cooling water blowdown. In a testing program for detection of asbestos fibers in the waters of 18 cooling systems, seven of the 18 sites... [Pg.589]

Figure 9.18. Main types of cooling towers, (a) Atmospheric, dependent on wind velocity, (b) Hyperbolic stack natural draft, (c) Hyperbolic assisted with forced draft fans, (d) Counterflow-induced draft, (e) Crossflow-induced draft, (f) Forced draft, (g) Induced draft with surface precooler for very hot water also called wet/dry tower, [(fc)-(e) from Cheremisinoff and Cheremisinoff, 1981). Figure 9.18. Main types of cooling towers, (a) Atmospheric, dependent on wind velocity, (b) Hyperbolic stack natural draft, (c) Hyperbolic assisted with forced draft fans, (d) Counterflow-induced draft, (e) Crossflow-induced draft, (f) Forced draft, (g) Induced draft with surface precooler for very hot water also called wet/dry tower, [(fc)-(e) from Cheremisinoff and Cheremisinoff, 1981).
Evaporation losses are about 1% of the circulation for every 10°F of cooling range. Windage or drift losses are 0.3-1.0% for natural draft towers and 0.1-0.3% for mechanical draft. Usually the salt content of the circulating water is limited to 3-7 times that of the makeup. Blowdown of 2.5-3% of the circulation accordingly is needed to maintain the limiting salt concentration. [Pg.285]

Presently, the United States accounts for 50% of the world cooling tower market. About 25% of the U.S. market is with the petrochemical industry, 15% involved in personal comfort and 60% with electric power generation [1]. More than twice as many of these towers are mechanical draft, as opposed to natural draft, units. The former type are employed nationwide,... [Pg.3]

Cooling towers are classified according to the method by which air is introduced to the tower. The principal types are atmospheric spray, natural-draft, mechanical-draft, deck-filled, spray-filled, coil shed and hyperbolic towers. Most industrial cooling tower installations are field-erected units designed for specific thermal characteristics. [Pg.59]

In an atmospheric spray tower the air movement - is dependent on atmospheric conditions and the aspirating effect of the spray nozzles. Natural-draft cooling tower operation depends on a chimney or stack to induce air movement. Mechanical-draft cboling towers utilize fans to move ambient air through the tower. Deck-filled towers contain tiers of splash bars or decks to assist in the breakup of water drops to increase the total water surface and subsequently the evaporation rate. Spray-filled towers depend only on spray nozzles for water breakup. Coil shed towers are comprised of a combination structure of a cooling tower installed on top of a substructure that contains atmospheric section coils. Hyperbolic natural-draft cooling towers are typically large-capacity systems. [Pg.59]


See other pages where Cooling natural draft is mentioned: [Pg.104]    [Pg.104]    [Pg.104]    [Pg.105]    [Pg.105]    [Pg.105]    [Pg.106]    [Pg.1169]    [Pg.1169]    [Pg.70]    [Pg.70]    [Pg.74]    [Pg.74]    [Pg.75]    [Pg.266]    [Pg.606]    [Pg.498]    [Pg.475]    [Pg.526]    [Pg.532]    [Pg.533]    [Pg.534]    [Pg.546]    [Pg.321]    [Pg.583]    [Pg.282]    [Pg.60]   
See also in sourсe #XX -- [ Pg.354 ]




SEARCH



Comparison Between Characteristics of Mechanical- and Natural-Draft Cooling Towers

Cooling towers natural draft tower

Hyperbolic, natural draft cooling towers

Natural draft

Natural draft cooling towers

© 2024 chempedia.info