Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cooling emulsions

TFE is a colorless, tasteless, odorless, and nontoxic gas. To avoid any undesired reactions during storage, inhibitors must be added. The polymerization is carried out by an addition-type reaction in an aqueous emulsion medium and in the presence of initiators such as benzoyl peroxide, hydrogen peroxide, and persulfates. The monomer is fed into a cooled emulsion medium and then heated to a temperature of 70-80°C, at which the polymerization takes place. [Pg.485]

Cool emulsion to 40°-50°C with agitation under vacuum. [Pg.167]

RS-55. [HeftiLtd.] PEG-40 stearate emulsi er for cosmetics, i aimaceuti-cals, silicone oil, cooling emulsions glass surface finishing agent... [Pg.321]

Most metal-cutting operations require the use of cutting fluids, and even those operations that can be performed dry can often be carried out more efficiently by the use of a cutting fluid. Cutting fluids are often referred to as metalworking fluids, but can also be known as lubrication fluids, cooling emulsions or oils, and drilling fluids. [Pg.691]

Threading can be done using HSSE taps. Sharp tools with coating (TiCN) and increased oil content to about 8% of the cooling emulsion are recommended. Since the copper materials tend to get the tap jammed, especially when unscrewing the tool, it is recommended to drill the core bore holes 0.1 to 0.25 mm larger, depending on the thread size. [Pg.491]

Shinoda also studied emulsions that were produced at temperatures below the PIT, at the PIT and above the PIT with rapid cooling to aid stability. Drop sizes of emulsions produced at the PIT were retained in the final cooled emulsion. Shinoda noted that emulsions with the finest drops were produced by emulsifying 2-4 C below the PIT and then cooling. Shinoda termed this emulsification method emulsification by the PIT method . The study also showed that emulsification by the inversion method , i.e. emulsification above the PIT as a W/O emulsion and then cooling, did not result in such small drops. [Pg.194]

Agar occurs as a cell-wall constituent of the red marine algae Rho ophyceae, from which it is extracted by hot water, and marketed as a dry powder, flakes, or strips. It dissolves in hot water and sets on cooling to a jelly at a concentration as low as 0-5%. Its chief uses are as a solid medium for cultivating micro-organisms, as a thickener, emulsion stabilizer in the food industry and as a laxative. [Pg.17]

For the latter purpose, dissolve the crystals in hot ethanol, and then add water drop by drop to the well-stirred solution until a line emulsion just appears then add more ethanol, also drop by drop, until the emulsion just redissolves. ow allow the solution to cool spontaneousK if the emulsion reappears, add a few drops of ethanol from time to time in order to keep the solution clear. Finally the o-nitrophenol separates in crystals, and the well-stirred mixture may now be cooled in ieewvater until crystallisation is complete. Filter, drain and diy either in an atmospheric desiccator, or by pressing between drying-paper. [Pg.172]

Then filter off the solid azoxybenzene at the pump, wash it thoroughly with water, and drain well. Recrystallise from a minimum of m ethylated spirit, allowing the hot solution to cool spontaneously (with occasional stirring) until crystallisation starts, and then cool in ice-water. If crystallisation is delayed, seed the solution with a trace of the crude product if on the other hand the azoxybenzene separates at first as an emulsion, add methylated spirit, drop by drop, with stirring until the solution is clear, and then allow the cooling to proceed as before. The... [Pg.212]

Dissolve I ml. of benzaldehyde and 0-4 ml. of pure acetone in 10 ml. of methylated spirit contained in a conical flask or widemouthed bottle of about 50 ml. capacity. Dilute 2 ml. of 10% aqueous sodium hydroxide solution with 8 ml. of water, and add this dilute alkali solution to the former solution. Shake the mixture vigorously in the securely corked flask for about 10 minutes (releasing the pressure from time to time if necessary) and then allow to stand for 30 minutes, with occasional shaking finally cool in ice-water for a few minutes. During the shaking, the dibenzal -acetone separates at first as a fine emulsion which then rapidly forms pale yellow crystals. Filter at the pump, wash well with water to eliminate traces of alkali, and then drain thoroughly. Recrystallise from hot methylated or rectified spirit. The dibenzal-acetone is obtained as pale yellow crystals, m.p. 112 yield, o 6 g. [Pg.231]

Finally, add an excess of concentrated hydrochloric acid slowly with stirring to the alkaline filtrate remaining from the original reaction product. As the solution becomes acid, the sulphonyl-aniline separates as a thick sticky syrup which, when stirred, rapidly crystallises. Cool the mixture in ice-water if necessary, and then filter off the solid product at the pump, wash well with water, and drain. Recrystallise from a mixture of 2 volumes of ethanol and i volume of water to prevent the sulphonyl-aniline from separating as an emulsion, allow the hot solution to cool spontaneously (with occasional stirring) until crystallisation starts, and... [Pg.250]

Dichloramine-T. Dilute 80 ml, of freshly prepared 2N sodium hypochlorite soluticMi (preparation, p. 525) with 80 ml. of w ter, and then add with stirring 5 g. of finely powdered toluene-p-sulphonamide, a clear solution being rapidly obtained. Cool in ice-water, and then add about 50 ml. of a mixture of equal volumes of glacial acetic acid and water slowly with stirring until precipitation is complete the dichloro-amide separates at first as a fine emulsion, which rapidly forms brittle colourless crystals. Filter off the latter at the pump, wash well with... [Pg.252]

Dissolve 27 g. of potassium hydroxide in 25 ml. of water contained in a beaker or conical flask, and cool the solution to about 20° in ice water. Pour the solution into a 250 ml. reagent bottle, and add 30 g. (29 ml.) of pure benzaldehyde ("1) cork the bottle securely and shake the mixture vigorously until it has been converted into a thick emulsion. Allow the mixture to stand overnight or for 24 hours in the stoppered bottle. Add just sufficient water (about 105 ml.) to dissolve the potassium benzoate. Pour the liquid into a separatory funnel, rinse out the bottle with about 30 ml. of ether and add this ether to the solution in the funnel. Shake the... [Pg.711]

In a 250 ml. conical flask mix a solution of 14 g. of sodium hydroxide in 40 ml. of water and 21 g. (20 ml.) of pure benzaldehyde (Section IV,115). Add 15 g. of hydroxylamine hydrochloride in small portions, and shake the mixture continually (mechanical stirring may be employed with advantage). Some heat is developed and the benzaldehyde eventually disappears. Upon coohiig, a crystalline mass of the sodium derivative separates out. Add sufficient water to form a clear solution, and pass carbon dioxide into the solution until saturated. A colourless emulsion of the a or syn-aldoxime separates. Extract the oxime with ether, dry the extract over anhydrous magnesium or sodium sulphate, and remove the ether on a water bath. Distil the residue under diminished pressure (Fig. 11,20, 1). Collect the pure syn-benzaldoxime (a-benzald-oxime) at 122-124°/12 mm. this gradually solidifies on cooling in ice and melts at 35°. The yield is 12 g. [Pg.719]

In a 500 ml. three-necked flask, fitted with a reflux condenser and mechanical stirrer, place 121 g. (126-5 ml.) of dimethylaniline, 45 g. of 40 per cent, formaldehyde solution and 0 -5 g. of sulphanilic acid. Heat the mixture under reflux with vigorous stirring for 8 hours. No visible change in the reaction mixture occurs. After 8 hours, remove a test portion of the pale yellow emulsion with a pipette or dropper and allow it to cool. The oil should solidify completely and upon boiling it should not smell appreciably of dimethylaniline if this is not the case, heat for a longer period. When the reaction is complete, steam distil (Fig. II, 41, i) the mixture until no more formaldehyde and dimethylaniline passes over only a few drops of dimethylaniline should distil. As soon as the distillate is free from dimethylaniline, pour the residue into excess of cold water when the base immediately solidifies. Decant the water and wash the crystalline solid thoroughly with water to remove the residual formaldehyde. Finally melt the solid under water and allow it to solidify. A hard yellowish-white crystalline cake of crude base, m,p. 80-90°, is obtained in almost quantitative yield. RecrystaUise from 250 ml. of alcohol the recovery of pure pp -tetramethyldiaminodiphenylmethane, m.p. 89-90°, is about 90 per cent. [Pg.987]

To separate the oil added an equal volume of fresh cool water (note waited until solution cooled before adding the water). The oil started to drop out perfectly, used DCM to extract all traces of the oil. This woik up is by far the cleanest, easiest and simplest to date... (This dreamer was tried all method of ketone synthesis)... Once the oil was extracted, the extracts were pooled washed with sodium bicarbonate lx, saturated solution of NaCI 1x, and two washes with fresh dHzO... Some time was required for the work up as there was a little emulsion from the use of the base wash and then with the first water wash. The JOC ref suggested using an alumina column to remove the catalyst (could be a better way to go). [Pg.81]

Monomer emulsions ate prepared in separate stainless steel emulsification tanks that are usually equipped with a turbine agitator, manometer level gage, cooling cods, a sprayer inert gas, temperature recorder, mpture disk, flame arrester, and various nossles for charging the ingredients. Monomer emulsions are commonly fed continuously to the reactor throughout the polymerisation. [Pg.169]

Aqueous media, such as emulsion, suspension, and dispersion polymerization, are by far the most widely used in the acryUc fiber industry. Water acts as a convenient heat-transfer and cooling medium and the polymer is easily recovered by filtration or centrifugation. Fiber producers that use aqueous solutions of thiocyanate or zinc chloride as the solvent for the polymer have an additional benefit. In such cases the reaction medium can be converted directiy to dope to save the costs of polymer recovery. Aqueous emulsions are less common. This type of process is used primarily for modacryUc compositions, such as Dynel. Even in such processes the emulsifier is used at very low levels, giving a polymerization medium with characteristics of both a suspension and a tme emulsion. [Pg.279]

Table 13 shows some of the developmental products that have EPA appHcations pending and may be available in the near future. Sea Nine is a variation on the very successflil isothiazolone chemistry. It is claimed to be an improvement over metallic actives used for antifouling paint and wood preservation (46,47). Decylthioethylamine and its water-soluble hydrochloride are claimed to be especially effective at controlling biofilm in cooling water appHcations (48—50). The hydroxymethylpyra2ole shown is also suggested to have properties that are well suited to the protection of aqueous products or emulsions (51,52). [Pg.101]

Complex Coacervation. This process occurs ia aqueous media and is used primarily to encapsulate water-iminiscible Hquids or water-iasoluble soHds (7). In the complex coacervation of gelatin with gum arabic (Eig. 2), a water-iasoluble core material is dispersed to a desired drop size ia a warm gelatin solution. After gum arabic and water are added to this emulsion, pH of the aqueous phase is typically adjusted to pH 4.0—4.5. This causes a Hquid complex coacervate of gelatin, gum arabic, and water to form. When the coacervate adsorbs on the surface of the core material, a Hquid complex coacervate film surrounds the dispersed core material thereby forming embryo microcapsules. The system is cooled, often below 10°C, ia order to gel the Hquid coacervate sheU. Glutaraldehyde is added and allowed to chemically cross-link the capsule sheU. After treatment with glutaraldehyde, the capsules are either coated onto a substrate or dried to a free-flow powder. [Pg.318]


See other pages where Cooling emulsions is mentioned: [Pg.171]    [Pg.13]    [Pg.171]    [Pg.13]    [Pg.367]    [Pg.1642]    [Pg.2564]    [Pg.18]    [Pg.171]    [Pg.232]    [Pg.249]    [Pg.250]    [Pg.306]    [Pg.451]    [Pg.357]    [Pg.142]    [Pg.143]    [Pg.169]    [Pg.169]    [Pg.12]    [Pg.12]    [Pg.12]    [Pg.451]    [Pg.96]    [Pg.101]    [Pg.252]    [Pg.267]    [Pg.268]    [Pg.321]    [Pg.233]   
See also in sourсe #XX -- [ Pg.691 ]




SEARCH



Cooling water emulsion

© 2024 chempedia.info