Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Type reactions Addition

Sec. I.B] THE LITERATURE OF HETEROCYCLIC CHEMISTRY II 307 2. Specialized Topics and Reaction Types Addition reactions ... [Pg.307]

We have now seen general acid- and general base-catalyzed processes for polarized multiple bond additions, eliminations, and enolizations. There is good reason to expect that all reaction types, additions, eliminations, substitutions, and rearrangements have general acid- or general base-catalyzed routes under the correct conditions. [Pg.207]

Finally, another type of additive, named reaction-type additive [2], acts by scavenging radical ions [41,42], or by combining with the final products of the SEI. Such is the case for CO2-providers [43,44], as CO2 facilitates the formation of the SEI formed with EC- and PC-based electrolytes [26,29,45-47]. A similar approach is the saturation of the electrolyte with Li2C03 [48,49]. [Pg.440]

There are significant differences between tliese two types of reactions as far as how they are treated experimentally and theoretically. Photodissociation typically involves excitation to an excited electronic state, whereas bimolecular reactions often occur on the ground-state potential energy surface for a reaction. In addition, the initial conditions are very different. In bimolecular collisions one has no control over the reactant orbital angular momentum (impact parameter), whereas m photodissociation one can start with cold molecules with total angular momentum 0. Nonetheless, many theoretical constructs and experimental methods can be applied to both types of reactions, and from the point of view of this chapter their similarities are more important than their differences. [Pg.870]

Chemists usually learn about reactions according to fiinctional groups for example, How can I make an aldehyde and what reactions are known for aldehydes " This is clearly not a very good starting point for classifying reactions. The poor state of affairs in the definition of reaction types is further quite vividly illustrated by the fact that many chemical reactions are identified by being named after their inventor Diels-Alder reaction, Michael addition, Lobry-de Bruyn-van Ekenstein rear-... [Pg.172]

The two reaction schemes of Figures 3-13 and 3-15 encompass a large proportion of all organic reactions. However, these reactions do not involve a change in the number of bonds at the atoms participating in them. Therefore, when oxidation and reduction reactions that also change the valency of an atom ate to be considered, an additional reaction scheme must be introduced in which free electron pairs are involved. Figure 3-16 shows such a scheme and some specific reaction types. [Pg.191]

We will show here the classification procedure with a specific dataset [28]. A reaction center, the addition of a C-H bond to a C=C double bond, was chosen that comprised a variety of different reaction types such as Michael additions, Friedel-Crafts alkylation of aromatic compounds by alkenes, or photochemical reactions. We wanted to see whether these different reaction types can be discerned by this... [Pg.193]

Figure 3-20. Distribution of the dataset of 120 reactions in the Kohonen netv/ork, a) The neurons were patterned on the basis of intellectually assigned reaction types b) in addition, empty neurons were patterned on the basis of their k nearest neighbors. Figure 3-20. Distribution of the dataset of 120 reactions in the Kohonen netv/ork, a) The neurons were patterned on the basis of intellectually assigned reaction types b) in addition, empty neurons were patterned on the basis of their k nearest neighbors.
Conventional synthetic schemes to produce 1,6-disubstituted products, e.g. reaction of a - with d -synthons, are largely unsuccessful. An exception is the following reaction, which provides a useful alternative when Michael type additions fail, e. g., at angular or other tertiary carbon atoms. In such cases the addition of allylsilanes catalyzed by titanium tetrachloride, the Sakurai reaction, is most appropriate (A. Hosomi, 1977). Isomerization of the double bond with bis(benzonitrile-N)dichloropalladium gives the y-double bond in excellent yield. Subsequent ozonolysis provides a pathway to 1,4-dicarbonyl compounds. Thus 1,6-, 1,5- and 1,4-difunctional compounds are accessible by this reaction. [Pg.90]

In the reaction of Q,/3-unsaturated ketones and esters, sometimes simple Michael-type addition (insertion and hydrogenolysis, or hydroarylation, and hydroalkenylation) of alkenes is observed[53,54]. For example, a simple addition product 56 to methyl vinyl ketone was obtained by the reaction of the heteroaromatic iodide 55[S5]. The corresponding bromide affords the usual insertion-elimination product. Saturated ketones are obtained cleanly by hydroarylation of o,/3l-unsaturated ketones with aryl halides in the presence of sodium formate, which hydrogenolyses the R—Pd—I intermediate to R— Pd—H[56]. Intramolecular hydroarylation is a useful reaction. The diiodide 57 reacts smoothly with sodium formate to give a model compound for the afla-toxin 58. (see Section 1.1.6)[57]. Use of triethylammonium formate and BU4NCI gives better results. [Pg.136]

Although the present chapter includes the usual collection of topics designed to acquaint us with a particular class of compounds its central theme is a fundamental reaction type nucleophilic addition to carbonyl groups The principles of nucleophilic addition to aide hydes and ketones developed here will be seen to have broad applicability m later chap ters when transformations of various derivatives of carboxylic acids are discussed... [Pg.703]

In the preceding chapter you learned that nucleophilic addition to the carbonyl group IS one of the fundamental reaction types of organic chemistry In addition to its own reactivity a carbonyl group can affect the chemical properties of aldehydes and ketones m other ways Aldehydes and ketones having at least one hydrogen on a carbon next to the carbonyl are m equilibrium with their enol isomers... [Pg.755]

AH corrosion inhibitors in use as of this writing are oil-soluble surfactants (qv) which consist of a hydrophobic hydrocarbon backbone and a hydrophilic functional group. Oil-soluble surfactant-type additives were first used in 1946 by the Sinclair Oil Co. (38). Most corrosion inhibitors are carboxyhc acids (qv), amines, or amine salts (39), depending on the types of water bottoms encountered in the whole distribution system. The wrong choice of inhibitors can lead to unwanted reactions. Eor instance, use of an acidic corrosion inhibitor when the water bottoms are caustic can result in the formation of insoluble salts that can plug filters in the distribution system or in customers vehicles. Because these additives form a strongly adsorbed impervious film at the metal Hquid interface, low Hquid concentrations are usually adequate. Concentrations typically range up to 5 ppm. In many situations, pipeline companies add their own corrosion inhibitors on top of that added by refiners. [Pg.186]

Other reactions that show preference for the acidic N-3—H group include Mannich aminomethylation by treatment with formaldehyde and an amine (38) to yield compound (8), reaction with ethyleneimine (39) to give (9), and Michael-type additions (40) such as the one with acrylonitrile to give (10) ... [Pg.251]

In addition to production of simple monofunctional products in hydrocarbon oxidation there are many complex, multifimctional products that are produced by less weU-understood mechanisms. There are also important influences of reactor and reaction types (plug-flow or batch, back-mixed, vapor-phase, Hquid-phase, catalysts, etc). [Pg.337]

Polymerization Reactions. Polymerization addition reactions are commercially the most important class of reactions for the propylene molecule and are covered in detail elsewhere (see Olefin polymers, polypropylene). Many types of gas- or liquid-phase catalysts are used for this purpose. Most recently, metallocene catalysts have been commercially employed. These latter catalysts requite higher levels of propylene purity. [Pg.124]

Addition Reactions. The addition of nucleophiles to quinones is often an acid-catalyzed, Michael-type reductive process (7,43,44). The addition of benzenethiol to 1,4-benzoquinone (2) was studied by A. Michael for a better understanding of valence in organic chemistry (45). The presence of the reduced product thiophenyUiydroquinone (52), the cross-oxidation product 2-thiophenyl-1,4-benzoquinone [18232-03-6] (53), and multiple-addition products such as 2,5-(bis(thiophenyl)-l,4-benzoquinone [17058-53-6] (54) and 2,6-bis(thiophenyl)-l,4-benzoquinone [121194-11-4] (55), is typical ofmany such transformations. [Pg.409]

SiHcone mbber has a three-dimensional network stmcture caused by cross-linking of polydimethyl siloxane chains. Three reaction types are predominantiy employed for the formation of siHcone networks (155) peroxide-induced free-radical processes, hydrosdylation addition cure, and condensation cure. SiHcones have also been cross-linked using radiation to produce free radicals or to induce photoinitiated reactions. [Pg.47]

Michael-Type Additions. Michael additions are generally used to prepare methyl 3-mercaptopropionate (eq. 10) and mercaptopropionitrile (eq. 11) by the reaction of methyl acrylate or acrylonitrile and hydrogen sulfide using a basic catalyst. This reaction proceeds as shown ... [Pg.11]

Chemiluminescent labels, in which the luminescence is generated by a chemical oxidation step, and bioluminescent labels, where the energy for light emission is produced by an enzyme-substrate reaction, are additional labeling types (39,42). Luminol [521 -31 -3] CgHyN202, and acridine [260-94-6] C H N, derivatives are often used as chemiluminescent labels. [Pg.101]

Class (2) reactions are performed in the presence of dilute to concentrated aqueous sodium hydroxide, powdered potassium hydroxide, or, at elevated temperatures, soHd potassium carbonate, depending on the acidity of the substrate. Alkylations are possible in the presence of concentrated NaOH and a PT catalyst for substrates with conventional pX values up to - 23. This includes many C—H acidic compounds such as fiuorene, phenylacetylene, simple ketones, phenylacetonittile. Furthermore, alkylations of N—H, O—H, S—H, and P—H bonds, and ambident anions are weU known. Other basic phase-transfer reactions are hydrolyses, saponifications, isomerizations, H/D exchange, Michael-type additions, aldol, Darzens, and similar... [Pg.186]

Michael-type addition, hydroxymethylation and Mannich reaction take place at nitrogen to give the corresponding 2-substituted 4-hydroxyphthalazin-l(2/f)-ones. [Pg.17]

The use of carbon nucleophiles in Michael-type addition reactions with pteridine and its derivatives leads to a quite complicated and divergent pattern. These reactions are strongly dependent on the nature of the carbon nucleophile and can be divided into various categories. [Pg.288]

The reactions of pyrroles with dienophiles generally follow two different pathways involving either a [4 + 2] cycloaddition or a Michael-type addition to a free a-position of the pyrrole ring. Pyrrole itself gives a complex mixture of products with maleic anhydride or maleic acid and with benzyne reacts to give 2-phenylpyrrole rather than a product of cycloaddition (Scheme 47). [Pg.65]

The stereochemistry of the most fundamental reaction types such as addition, substitution, and elimination are described by terms which specify the stereochemical relationship between the reactants and products. Addition and elimination reactions are classified as syn or anti, depending on whether the covalent bonds which are made or broken are on the same face or opposite faces of the plane of the double bond. [Pg.97]

Electrophilic additions to allenes represent an interesting reaction type which is related to additions to both alkenes and alkynes. An allene could, for example, conceivably be protonated at either a terminal s[p- carbon or the central sp carbon. [Pg.376]

Suzuki, T. and Kasuya, A., Adhesion of addition-reaction type silicone elastomers. J. Adhes. Sci. Teclmoi, 3(6), 463-473 (1989). [Pg.708]

In contrast, tertiary amines do not possess a proton to transfer, and the reaction of the Michael-type addition adduct with ECA can only initiate polymerization to form high molecular weight adhesive polymer, as shown earlier in Scheme 1. [Pg.863]


See other pages where Type reactions Addition is mentioned: [Pg.202]    [Pg.1241]    [Pg.307]    [Pg.1146]    [Pg.2418]    [Pg.444]    [Pg.202]    [Pg.1241]    [Pg.307]    [Pg.1146]    [Pg.2418]    [Pg.444]    [Pg.172]    [Pg.2]    [Pg.299]    [Pg.324]    [Pg.979]    [Pg.135]    [Pg.303]    [Pg.678]    [Pg.700]    [Pg.703]    [Pg.824]    [Pg.2409]    [Pg.228]   


SEARCH



Addition-elimination reactions Michael-type

Additives types

Aldol-type reactions tandem conjugate addition

Asymmetric Michael-Type Addition Reaction

Conjugate addition Michael-type reactions

Enantioselective Conjugate Addition Reactions Proceeding via Other Types of Activation

Enantioselective reactions aldol-type additions

Ferrier-type reactions elimination-addition

Grignard-Type Addition Reactions of Organozinc Compounds

Grignard-type reaction addition

Michael-type addition reactions

Organozinc compounds Grignard-type addition reactions

Other Types of Addition Reactions

Silene-Type Species in Elimination-Addition Reactions

© 2024 chempedia.info