Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Control Rectifiers

Cathodic protection stations frequently operate under conditions that are continually changing. These include  [Pg.233]

In such conditions, it is recommended that the T-R be equipped with an electrical control circuit, which primarily keeps the potential constant, and, in exceptional circumstances, also the protection current. These pieces of equipment are potentiostats (for controlling potential) and galvanostats (for controlling current) [8]. [Pg.234]

The adjustment of a protection station or of a complete protection system where there is stray current interference is made much easier by potential control. Potential control can be indispensable for electrochemical protection if the protection potential range is very small (see Sections 2.4 and 21.4). This saves anode material and reduces running costs. [Pg.234]

Current control can be more advantageous where rail/soil potentials are predominantly positive. Current control is also preferred in the cathodic protection of steel-water construction if the anode resistance fluctuates due to changes in electrical conductivity. [Pg.234]

Potential control rectifiers can also be constructed using thyristors. However, these produce strong high-frequency harmonic waves that can be transmitted to [Pg.234]


Some induction heating furnaces must operate at frequencies higher than the supply frequency. Formerly, rotating motor alternator frequency converters were used. Now the avadabdity of high speed, high power sdicon controlled rectifiers for use in frequency converters has made rotary converters obsolete. Modem units operate at higher efficiency, cost less, require less factory space, and coordinate readdy with process controls (2). [Pg.127]

The silicon-controlled rectifier with a dc motor has become predominant in adjustable-speed drives for almost all commonly used conveyors when speed adjustment to process conditions is necessary. The low cost of this control device has influenced its use when speed synchronization among conveyors is required. This can also be done, of course, by changing sheave or sprocket ratios. [Pg.1913]

Another concept is brushless excitation, in which an ac generator (exciter) is direc tfy coupled to or mounted on the motor shaft. The ac exciter has a stator field and an ac rotor armature which is directly connected to a static controllable rectifier on the motor rotor (or a shaft-mounted drum). Static control elements (to sense synchronizing speed, phase angle, etc.) are also rotor-mounted, as is the field discharge resistor. Changing the exciter field adjusts the motor field current without the necessity of brushes or slip rings. Brushless excitation is suitable for use in hazardous atmospheres, where conventional brush-type motors must have protective brush and slip-ring enclosures. [Pg.2485]

In addition to secondarv resistance control, other devices such as reactors and thyristors (solid-state controllable rectifiers) are used to control wound-rotor motors. Fixed secondary reactors combined with resistors can provide veiy constant accelerating torque with a minimum number of accelerating steps. The change in slip frequency with speed continually changes the effective reac tance and hence the value of resistance associated with the reactor. The secondaiy reactors, resistors, and contacts can be varied in design to provide the proper accelerating speed-torque curve for the protection of belt conveyors and similar loads. [Pg.2486]

Silicon-controlled rectifiers (SCR). These arc basictilly thyristors and unless specified, a thyristor will mean an SCR Triacs... [Pg.115]

It - the firing angle 3-d hall wave controlled rectifier. (Current flow-unldirectlonal)... [Pg.117]

A cttnirolled rectifier unit is necessary when it has to control a d.c. machine, which w ould call for i variable d.c, voltage. When the d.e. machine has to operate in only one direction (quadrants I or III) a half-wave controlled rectifier w ill be adequate and when the machine has to operate in either direction, a full-wave controlled rectifier will be essential. [Pg.119]

Figure 6.24(a) A few configurations of controlled rectifier units (for uncontrolled rectifier units the thyristors (SCRs) are replaced with diodes)... [Pg.121]

Greater deviations which are occasionally observed between two reference electrodes in a medium are mostly due to stray electric fields or colloid chemical dielectric polarization effects of solid constituents of the medium (e.g., sand [3]) (see Section 3.3.1). Major changes in composition (e.g., in soils) do not lead to noticeable differences of diffusion potentials with reference electrodes in concentrated salt solutions. On the other hand, with simple metal electrodes which are sometimes used as probes for potential controlled rectifiers, certain changes are to be expected through the medium. In these cases the concern is not with reference electrodes, in principle, but metals that have a rest potential which is as constant as possible in the medium concerned. This is usually more constant the more active the metal is, which is the case, for example, for zinc but not stainless steel. [Pg.87]

CU-CUSO4 electrodes with saturated CUSO4 solution are recommended for potential measurements in soil. Their potential constancy is about 5 mV. Larger errors can be traced to chemical changes in the CUSO4 solution. These electrodes have been developed for long-life applications in potential-controlled rectifiers and built-... [Pg.87]

Figure 8-5 shows the main circuit diagram of a potential control rectifier provided with magnetic amplifiers (transducers). The chosen potential is set at the nominal value with a potentiometer. The actual potential is compared with this value, which corresponds to the voltage between a reference electrode and the protected object. [Pg.234]

Current-controlling rectifiers are constructed in general on the same circuit principles as potential-controlling rectifiers only with them, the protection current is converted to a voltage via a constant shunt in the control circuit and fed in as the actual value. With devices with two-point control, the ammeter has limiting value contacts that control the motor-driven controlled transformer. [Pg.236]

In Fig. 15-9 two potentiostatically controlled protection rectifiers and an additional diode are included to drain peak currents. At pipeline crossings with an external rail network (e.g., in regions outside the urban area), the forced stray current drainage should be installed as close as possible to the rails that display negative potentials for the longest operation time. The currents absorbed from the positive rails continue to flow also in the region outside the rail crossings. Here the use of potentiostatically controlled rectifiers is recommended these should be connected not only to the rails but also to impressed current anodes. [Pg.362]

Measuring electrodes for impressed current protection are robust reference electrodes (see Section 3.2 and Table 3-1) which are permanently exposed to seawater and remain unpolarized when a small control current is taken. The otherwise usual silver-silver chloride and calomel reference electrodes are used only for checking (see Section 16.7). All reference electrodes with electrolytes and diaphragms are unsuitable as long-term electrodes for potential-controlled rectifiers. Only metal-medium electrodes which have a sufficiently constant potential can be considered as measuring electrodes. The silver-silver chloride electrode has a potential that depends on the chloride content of the water [see Eq. (2-29)]. This potential deviation can usually be tolerated [3]. The most reliable electrodes are those of pure zinc [3]. They have a constant rest potential, are slightly polarizable and in case of film formation can be regenerated by an anodic current pulse. They last at least 5 years. [Pg.408]

Cathodic protection of water power turbines is characterized by wide variations in protection current requirements. This is due to the operating conditions (flow velocity, water level) and in the case of the Werra River, the salt content. For this reason potential-controlled rectifiers must be used. This is also necessary to avoid overprotection and thereby damage to the coating (see Sections 5.2.1.4 and 5.2.1.5 as well as Refs. 4 and 5). Safety measures must be addressed for the reasons stated in Section 20.1.5. Notices were fixed to the turbine and the external access to the box headers which warned of the danger of explosion from hydrogen and included the regulations for the avoidance of accidents (see Ref. 4). [Pg.474]

NOTE Do not use snubber values or snubber elements intended for silicon-controlled rectifier (SCR) circuits in switching power supplies. The impedances and parasitic values of these circuits are much lower than within switching power supplies. They will create far too much loss in switching power supply circuits. [Pg.146]

The exciter is an AC generator with a stator-mounted field. Direct cur rent for the exciter field is provided from an external source, typically u small variable voltage rectifier mounted at the motor starter. Exciter oui put is converted to DC through a three-phase, full-wave, silicon-diode bridge rectifier. Thyristors (silicon-controlled rectifiers) switch the cur rent to the motor field and the motor-starting, field-discharge resistors These semiconductor elements are mounted on heat sinks and assembled on a drum bolted to the rotor or shaft. [Pg.266]

Inverter-AC Motor Drives. An adjustable-frequency control of AC motors provide efficient operation with the use of brushless, high-performance induction, and synchronous motors. A typical system is shown in Figure. 3-14. Such a system consists of a rectifier (which provides DC power from the AC line) and an inverter (which converts the DC power to acljustable-frequency AC power for the motor). Inverter cost per kilowatt is about twice that of controller rectifiers thus the power convertor for an AC drive can approach three times the cost of a DC drive. [Pg.417]

The inverter drive system that uses a current-controlled rectifier and parallel-capacitor commutation operates to both improve reliability and reduce cost. Such systems are built commercially for the ranges from 20 to 500 hp for the typical 20 1 constant-torque speed range. [Pg.418]

The laboratory layout is sketched in Fig. 15.4 The power supply is a 3-phase silicon controlled rectifier, SCR, controlled supply capable of delivering 200 A at 50 V. [Pg.537]

A plasma torch is based on arc ignition between a thermionic tungsten cathode and a co-axial copper anode both water-cooled anode and cathode are immersed in an axial magnetic field. Nitrogen is generally chosen as the plasma gas. Air or steam can be injected into the plasma to increase the enthalpy and to produce sub-stoichiometric incineration. The torch is powered by a thyristor-controlled rectifier, which has controls to match the torch impedance. [Pg.163]

F. E. Gentry, F. W. Gutzwiller, N. Holonyak, and E. E. Von Zastrow, Semiconductor Controlled Rectifiers Principles and Applications of p-n—p-n Devices, Prentice-Hall, Englewood Cliffs, NJ, 1964. [Pg.158]

The use of Si in electronic devices such as Si controlled rectifiers (SCR) is worthy of mention because electronic devices are used extensively in ballistics and other branches of ordnance. According to Cassidy (Ref 25),... [Pg.324]

Testing of Diodes, Silicon Controlled Rectifiers, Transistors and Integrated Circuits , PATR 4692 (1974) 25a) T. Shiki et al, Gas-Pro-... [Pg.329]


See other pages where Control Rectifiers is mentioned: [Pg.2487]    [Pg.115]    [Pg.115]    [Pg.115]    [Pg.116]    [Pg.116]    [Pg.117]    [Pg.119]    [Pg.124]    [Pg.124]    [Pg.130]    [Pg.732]    [Pg.233]    [Pg.236]    [Pg.537]    [Pg.539]    [Pg.368]    [Pg.311]   


SEARCH



Control rectifier unit configurations

Control silicon rectifiers

Equipment and Control of Transformer-Rectifiers

Impressed current equipment control rectifiers

Rectifier/transformer control

Semiconductor-controlled rectifiers

Silicon Control Rectifier (SCR)

Silicon-controlled rectifiers

© 2024 chempedia.info