Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Compounds hydrates and

The oxyanions of phosphorus and arsenic take up the major portion of a recent large volume of Gmelin (C9), which includes more than 100 compounds, hydrates and phases containing phosphate groups.263 To pursue the detail of the latter is an exercise in phosphorus chemistry, so we concentrate on a survey of the available data on the Mn" coordination polyhedra. [Pg.45]

When concrete is mixed with water, silicate compounds hydrate and form gelatinous materials called gels. [Pg.167]

The formation of complex ions can also be looked at as Lewis acid-base reactions. Complex ions are formed when a metal ion bonds to electron pairs from molecules such as H2O or NH3 or from anions such as C=N . An example of a complex ion is A1(H20)6. Hydrated ions like A1(H20)6 are present in compounds (hydrates) and in aqueous solution. The formation of a hydrated metal ion, such as A1(H20)6 ", involves a Lewis acid-base reaction. [Pg.666]

Prediction of solubility for simple ionic compounds is difficult since we need to know not only values of hydration and lattice enthalpies but also entropy changes on solution before any informed prediction can be given. Even then kinetic factors must be considered. [Pg.79]

Unlike solid leadflF) chloride which is ionic and which dissolves in water to form hydrated and CP ions, lead(TV) chloride is an essentially covalent volatile compound which is violently hydrolysed by water. [Pg.200]

Hydrophobic effects include two distinct processes hydrophobic hydration and hydrophobic interaction. Hydrophobic hydration denotes the way in which nonpolar solutes affect the organisation of the water molecules in their immediate vicinity. The hydrophobic interaction describes the tendency of nonpolar molecules or parts thereof to stick together in aqueous media " . A related frequently encountered term is hydrophobicity . This term is essentially not correct since overall attractive interactions exist between water and compounds commonly referred to as... [Pg.14]

In spite of widespread usage of these compounds, the stmctures of only the calcium, barium, and strontium compounds are reasonably weU-estabhshed. The materials are generally made by trituratiag the oxides, or hydroxides, with aqueous hydrogen peroxide and dryiag the soHd products. The commercial products are typically mixtures of the peroxides with varyiag amounts of hydroxides, oxides, carbonates, hydrates, and peroxohydrates. [Pg.91]

Furalazine, Acetylfuratrizine, Panfuran-S. Heating nitrovin in butanol or dimethylformamide at 100—130°C affords furalazine, 6-[2-(5-nitro-2-furanyl)ethenyl]-l,2,4-triazine-3-amine (34). An improved synthesis originates with 5-nitro-2-furancarboxaldehyde and acetone, proceeds through 4-(5-nitro-2-furanyl)-3-buten-2-one followed by a selenium dioxide oxidation to the pymvaldehyde hydrate, and subsequent reaction with aininoguariidine (35). Furalazine, acetylfuratrizine (36), and the A[-A/-bis(hydroxymethyl) derivative, Panfuran-S, formed from the parent compound and formaldehyde (37), are systemic antibacterial agents. [Pg.461]

Barium is a member of the aLkaline-earth group of elements in Group 2 (IIA) of the period table. Calcium [7440-70-2], Ca, strontium [7440-24-6], Sr, and barium form a closely aUied series in which the chemical and physical properties of the elements and thek compounds vary systematically with increa sing size, the ionic and electropositive nature being greatest for barium (see Calcium AND CALCIUM ALLOYS Calcium compounds Strontium and STRONTIUM compounds). As size increases, hydration tendencies of the crystalline salts increase solubiUties of sulfates, nitrates, chlorides, etc, decrease (except duorides) solubiUties of haUdes in ethanol decrease thermal stabiUties of carbonates, nitrates, and peroxides increase and the rates of reaction of the metals with hydrogen increase. [Pg.475]

The oxides and oxyacids of boron as well as a variety of hydrated and anhydrous metal borates are discussed hereia. An alphabetical Hst of compounds referred to ia the text is given ia Table 1. [Pg.188]

Borate salts or complexes of virtually every metal have been prepared. For most metals, a series of hydrated and anhydrous compounds maybe obtained by varying the starting materials and/or reaction conditions. Some have achieved commercial importance. [Pg.209]

Coal ash is derived from the mineral content of coal upon combustion or utilization. The minerals are present as discrete particles, cavity fillings, and aggregates of sulfides, sulfates, chlorides, carbonates, hydrates, and/or oxides. The key ash-forming elements and compounds are (4,5) ... [Pg.252]

The small (10 -lm) coating particles are typically aluminum oxide [1344-28-1/, Al O. These particles can have BET surface areas of 100 to 300 m /g. The thermal and physical properties of alumina crystalline phases vary according to the starting phase (aluminum hydroxide or hydrate) and thermal treatment (see ALUMINUM COMPOUNDS, ALUMINUM OXIDE). [Pg.485]

Hydroxyphthalazin-l(2//)-one is obtained in a smooth reaction between phthalic anhydride and hydrazine hydrate and this is again the starting compound for many 1-substituted and/or 1,4-disubstituted phthalazines. The transformations of 1,4-dichloro-phthalazine, which is prepared in the usual manner, follow a similar pattern as shown for pyridazines in Scheme 110. On the other hand, phthalonitrile is the preferential starting compound for amino- and hydrazino-phthalazines. The most satisfactory synthesis of phthalazine is the reaction between a,a,a, a -tetrachloro-o-xylene and hydrazine sulfate in sulfuric acid (67FRP1438827), alt iough catalytic dehalogenation of 1-chloro- or 1,4-dichloro-phthalazine or oxidation of 1-hydrazinophthalazine also provides the parent compound in moderate yield. [Pg.56]

The mechanistic pattern established by study of hydration and alcohol addition reactions of ketones and aldehydes is followed in a number of other reactions of carbonyl compounds. Reactions at carbonyl centers usually involve a series of addition and elimination steps proceeding through tetrahedral intermediates. These steps can be either acid-catalyzed or base-catalyzed. The rate and products of the reaction are determined by the reactivity of these tetrahedral intermediates. [Pg.456]

In the feed preparation section, those materials are removed from the reactor feed which would either poison the catalyst or which would give rise to compounds detrimental to product quality. Hydrogen sulfide is removed in the DBA tower, and mercaptans are taken out in the caustic wash. The water wash removes traces of caustic and DBA, both of which are serious catalyst poisons. Also, the water wash is used to control the water content of the reactor feed (which has to be kept at a predetermined level to keep the polymerization catalyst properly hydrated) and remove NH3, which would poison the catalyst. Diolefins and oxygen should also be kept out of poly feed for good operation. [Pg.226]

An adjacent tnfluoromethyl group sharply increases the electrophilic character of the carbonyl carbon Compounds that readily form hydrates and hemiacetals show a time-dependent reversible mhibition of the en yme acetylcholinesterase (equation 2), in which the tight complex makes inhibition only partially reversible [75] In comparison with a nonfluormated analogue, several aliphatic ketones flanked by CFj and CF2 groups, are exceptionally potent reversible inhibitors of acetylcholinesterase, as documented by companson of inhibition constants shown in equation 3 [16 ... [Pg.1012]

The bleaching powder acts as though it consisted of a compound of calcium hydrate and chlorine, and the process probably occurs in two stages. [Pg.71]

The ionization constant of a typical heterocyclic compound (e.g., quinoline) designates the equilibrium involving a proton, a neutral molecule and its cation. With quinazoline, however, two distinct species (hydrated and anhydrous) are involved each of which is in equilibrium with its cation, and can be represented as in the reaction scheme, (7), (8), (3), and (4). [Pg.259]

The parent compounds undergo facile hydrolysis to aminoaldehydes subsequent to the covalent hydration and reversible ring-opening as described above for pyrido[4,3-d]pjrrimidines (Section IV, B). 2-(3-Pyridyl)pyTido[2,3-d]pyrimidine undergoes hydrolysis to yield 2-aminonicotinaldehyde and nicotinamide when treated with N—HCl under reflux for 3 hours. This mechanism also probably involves a covalent hydrate. 2-Methylpyrido[4,3-d]pyrimidin-4(3H)-one, although much more stable than the parent compound, is readily hydrolyzed with dilute acid, whereas the isomeric compounds from the other three systems are stable under such conditions. [Pg.193]

Brown and Mason converted the hydrates into alcoholates by boiling them with alcohol. The hydrate and alcoholate of 6,7-diethyl-2-hydroxypteridine showed two N—H absorption bands in the infrared, and, when either compound was heated at 120° in vacuo, the band of higher frequency was strongly reduced in intensity. These results led to a new test for covalent hydration the substance is refluxed with... [Pg.16]

The spectra of 1,3,5-, 1,3,7-, and 1,3,8-triazanaphthalerie cations revealed that they were predominantly hydrated, and mild oxidation to the corresponding 4-oxo compounds indicated that hydroxylation took place on C-4. Ring-chain tautomerism in the cation was excluded, at least during the first 45 min after mixing, because negative aldehyde tests were obtained with p-nitrophenylhydrazine. 1,3,6-Triazanaphthalene, under the same conditions, gave a yellow precipit-... [Pg.23]

The carbonyl compound to be reduced (0.1 mole) is placed in a 250-ml round-bottom flask with 13.5 g of potassium hydroxide, 10 ml of 85% hydrazine hydrate, and 1(X) ml of diethylene glycol. A reflux condenser is attached and the mixture is heated to reflux for I hour (mantle). After refluxing 1 hour, the condenser is removed and a thermometer is immersed in the reaction mixture while slow boiling is continued to remove water. When the pot temperature has reached 200°, the condenser is replaced and refluxing is continued for an additional 3 hours. The mixture is then cooled, acidified with concentrated hydrochloric acid, and extracted with benzene. The benzene solution is dried, and the benzene is evaporated to afford the crude product, which is purified by recrystallization or distillation. [Pg.55]

Ionic compounds often separate from water solution with molecules of water incorporated into the solid. Such compounds are referred to as hydrates. An example is hydrated copper sulfate, which contains five moles of H20 for every mole of CuS04. Its formula is CuS04- 5H20 a dot is used to separate the formulas of the two compounds CuS04 and H20. A Greek prefix is used to show the number of moles of water the systematic name of CuS04- 5H20 is copper(ll) sulfate pentahydrate. [Pg.66]

Table 28 presents structural characteristics of compounds with X Me ratios between 6 and 5 (5.67, 5.5, 5.33, 5.25). According to data provided by Kaidalova et al. [197], MsNbsC Fu type compounds contain one molecule of water to form M5Nb303Fi4-H20, where M = K, Rb, Cs, NH4. Cell parameters for both anhydrous compounds [115] and crystal-hydrates [197] were, nevertheless, found to be identical. Table 28 includes only anhydrous compound compositions because IR absorption spectra of the above compounds display no bands that refer to vibrations of the water molecule... [Pg.82]

Chromic hydroxide, Cr(OH)3, is a compound with low solubility in water. It is usually hydrated and does not have the definite composition represented by the formula. It is quite soluble either in strong acid or strong base. [Pg.410]


See other pages where Compounds hydrates and is mentioned: [Pg.22]    [Pg.272]    [Pg.293]    [Pg.45]    [Pg.45]    [Pg.3499]    [Pg.22]    [Pg.272]    [Pg.293]    [Pg.45]    [Pg.45]    [Pg.3499]    [Pg.60]    [Pg.250]    [Pg.79]    [Pg.472]    [Pg.530]    [Pg.433]    [Pg.67]    [Pg.293]    [Pg.200]    [Pg.323]    [Pg.136]    [Pg.146]    [Pg.276]    [Pg.1057]    [Pg.120]    [Pg.239]    [Pg.1185]   
See also in sourсe #XX -- [ Pg.29 ]




SEARCH



Hydrated compounds

Hydration, Alcoholation and the Related Reactions of Unsaturated Compounds

© 2024 chempedia.info