Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coenzyme acceptors

Tetrahydrofolic acid which was found to be a coenzyme acceptor of a single carbon unit for the conversion of serine to glycine also reacts with formaldehyde chemically to form a derivative which can serve as an enzymatic donor of an hydroxymethyl group -. Studies on the formaldehyde binding... [Pg.100]

In the complete oxidation of fuel molecules relatively little ATP is produced directly by substrate-level phosphorylation (Section 12.5). Irrespective of the metabolic fuel (carbohydrates, fatty acids or amino acids), most of the ATP is derived from the electrons released on the reoxidation of coenzymes, NADH or FADHj. During dehydrogenase-catalysed reactions, electrons are removed from substrates and transferred to coenzymic acceptors which in turn deliver the electrons to an organization of numerous proteins, called an electron-transport assembly. These assemblies are located in the inner membrane of mitochondria, in chloroplast thylakoids (Section 9.5) or in the plasma membrane of bacteria. Electrons are passed along the assembly to molecular oxygen, the final acceptor, which is reduced in the presence of protons to water. During their transfer from component to component, a portion of their energy is released and may be conserved by utilization in the phos-... [Pg.160]

All the individual steps are catalyzed by enzymes NAD" (Section 15 11) is required as an oxidizing agent and coenzyme A (Figure 26 16) is the acetyl group acceptor Coen zyme A is a thiol its chain terminates m a sulfhydryl (—SH) group Acetylation of the sulfhydryl group of coenzyme A gives acetyl coenzyme A... [Pg.1070]

Section 27 21 Often the catalytically active functions of an enzyme are nothing more than proton donors and proton acceptors In many cases a protein acts m cooperation with a coenzyme, a small molecule having the proper func tionahty to carry out a chemical change not otherwise available to the protein itself... [Pg.1152]

FIGURE 14.22 Glutamate aspartate aminotransferase, an enzyme conforming to a double-displacement bisnbstrate mechanism. Glutamate aspartate aminotransferase is a pyridoxal phosphate-dependent enzyme. The pyridoxal serves as the —NH, acceptor from glntamate to form pyridoxamine. Pyridoxamine is then the amino donor to oxaloacetate to form asparate and regenerate the pyridoxal coenzyme form. (The pyridoxamine enzyme is the E form.)... [Pg.453]

Nicotinamide is an essential part of two important coenzymes nicotinamide adenine dinucleotide (NAD ) and nicotinamide adenine dinucleotide phosphate (NADP ) (Figure 18.19). The reduced forms of these coenzymes are NADH and NADPH. The nieotinamide eoenzymes (also known as pyridine nucleotides) are electron carriers. They play vital roles in a variety of enzyme-catalyzed oxidation-reduction reactions. (NAD is an electron acceptor in oxidative (catabolic) pathways and NADPH is an electron donor in reductive (biosynthetic) pathways.) These reactions involve direct transfer of hydride anion either to NAD(P) or from NAD(P)H. The enzymes that facilitate such... [Pg.588]

Access to three different redox states allows flavin coenzymes to participate in one-electron transfer and two-electron transfer reactions. Partly because of this, flavoproteins catalyze many different reactions in biological systems and work together with many different electron acceptors and donors. These include two-electron acceptor/donors, such as NAD and NADP, one- or two-elec-... [Pg.591]

Folic acid derivatives (folates) are acceptors and donors of one-carbon units for all oxidation levels of carbon except that of CO2 (where biotin is the relevant carrier). The active coenzyme form of folic acid is tetrahydrofolate (THF). THF is formed via two successive reductions of folate by dihydrofolate reductase (Figure 18.35). One-carbon units in three different oxidation states may be bound to tetrahydrofolate at the and/or nitrogens (Table 18.6). These one-carbon units... [Pg.602]

As we have seen, the metabolic energy from oxidation of food materials—sugars, fats, and amino acids—is funneled into formation of reduced coenzymes (NADH) and reduced flavoproteins ([FADHg]). The electron transport chain reoxidizes the coenzymes, and channels the free energy obtained from these reactions into the synthesis of ATP. This reoxidation process involves the removal of both protons and electrons from the coenzymes. Electrons move from NADH and [FADHg] to molecular oxygen, Og, which is the terminal acceptor of electrons in the chain. The reoxidation of NADH,... [Pg.679]

As its name implies, the citric acid cycle is a closed loop of reactions in which the product of the hnal step (oxaloacetate) is a reactant in the first step. The intermediates are constantly regenerated and flow continuously through the cycle, which operates as long as the oxidizing coenzymes NAD+ and FAD are available. To meet this condition, the reduced coenzymes NADH and FADH2 must be reoxidized via the electron-transport chain, which in turn relies on oxygen as the ultimate electron acceptor. Thus, the cycle is dependent on the availability of oxygen and on the operation of the electron-transport chain. [Pg.1154]

Flavin Adenine Dinucleotide (FAD) (C27 H33 N9 O15P2) is a coenzyme that acts as a hydrogen acceptor in dehydrogenation reactions in an oxidized or reduced form. FAD is one of the primary cofactors in biological redox reactions. [Pg.507]

These dehydrogenases use nicotinamide adenine dinucleotide (NAD ) or nicotinamide adenine dinucleotide phosphate (NADP )—or both—and are formed in the body from the vitamin niacin (Chapter 45). The coenzymes are reduced by the specific substrate of the dehydrogenase and reoxidized by a suitable electron acceptor (Figure 11-4). They may freely and reversibly dissociate from their respective apoenzymes. [Pg.87]

Since, in order to decarboxylate pyruvate, the cofactor (6-thioctic acid) must be in its oxidized form, Calvin suggested that, in the presence of light, the coenzyme shifts to the reduced (dithiol) form, thus markedly reducing the rate of incorporation of C14 into the Krebs cycle. Furthermore, Bradley and Calvin236(f) suggested that 6-thioctic acid is an acceptor of... [Pg.235]

Many papers have been published about the enzymatic degradation of polyphenols through the action of oxidizing enzymes. Thus, various classifications have been provided for these types of biocatalytic molecules, according to their coenzyme requirements or according to the nature of the oxidizing substrate (the electron acceptor) and the reaction products (Fig. 4.1). [Pg.103]

The most important coenzymes in synthetic organic chemistry [14] and industrially applied biotransformations [15] are the nicotinamide cofactors NAD/ H (3a/8a, Scheme 43.1) and NAD(P)/H (3b/8b, Scheme 43.1). These pyridine nucleotides are essential components of the cell [16]. In all the reactions where they are involved, they serve solely as hydride donors or acceptors. The oxidized and reduced form of the molecules are shown in Scheme 43.1, the redox reaction taking place at the C-4 atom of the nicotinamide moiety. [Pg.1471]

N-Acetyltransferases catalyze the transfer of an acetyl moiety from coenzyme A (CoASAc) to an acceptor amine as seen in Eq. (10). The nature of the... [Pg.355]

Nicotinic acid derivatives occur in biologic materials as the free acid, as nicotinamide, and in two coenzymatic forms nicotinamide adenine dinucleotide (NAD), and nicotinamide adenine dinucleotide phosphate (NADP). These coenzymes act in series with flavoprotein enzymes and, like them, are hydrogen acceptors or, when reduced, donors. Several plants and bacteria use a metabolic pathway for the formation of nicotinic acid that is different from the tryptophan pathway used by animals and man (B39). [Pg.199]

In some cases, enzymes require the assistance of coenzymes (cofactors) to ensure the reactions proceed. Coenzymes include vitamins, metal ions, acids, and bases. They can act as transporters or electron acceptors or be involved in oxidation-reduction reactions. At the completion of the reaction, coenzymes are released, and they do not form part of the products. For some reactions that are energetically unfavorable, an energy source provided by the compound adenosine triphosphate (ATP) is needed to ensure the reactions proceed, as shown in the following reactions ... [Pg.35]

Ferredoxins (Fds) are widespread in the three domains of life and an abundance of sequence data and structural information are available for Fds isolated from several sources. In particular, the bacterial type Fds are small electron-transfer proteins that posses cubane xFe-yS clusters attached to the protein matrix by Fe ligation of Cys via a conserved consensus ligating sequence. The archaeal type ferredoxins are water-soluble electron acceptors for the acyl-coenzyme A forming 2-oxoacid/ferredoxin oxidoreductase, a key enzyme involved in the central archaeal metabolic pathways. Fds have been distinguished according to the number of iron and inorganic sulphur atoms, 2Fe-2S, 4Fe-4S/3Fe-4S (Fig. Ib-d) and Zn-containing Fds. [Pg.128]

The intermediary metabolism has multienzyme complexes which, in a complex reaction, catalyze the oxidative decarboxylation of 2-oxoacids and the transfer to coenzyme A of the acyl residue produced. NAD" acts as the electron acceptor. In addition, thiamine diphosphate, lipoamide, and FAD are also involved in the reaction. The oxoacid dehydrogenases include a) the pyruvate dehydrogenase complex (PDH, pyruvate acetyl CoA), b) the 2-oxoglutarate dehydrogenase complex of the tricarboxylic acid cycle (ODH, 2-oxoglutarate succinyl CoA), and c) the branched chain dehydrogenase complex, which is involved in the catabolism of valine, leucine, and isoleucine (see p. 414). [Pg.134]

An important aspect of PDH catalysis is the spatial relationship between the components of the complex. The covalently bound lipoamide coenzyme is part of a mobile domain of E2, and is therefore highly mobile. This structure is known as the lipoamide arm, and swings back and forth between El and E3 during catalysis. In this way, lipoamide can interact with the TPP bound at El, with solute coenzyme A, and also with the FAD that serves as the electron acceptor in E3. [Pg.134]

This enzyme [EC 2.3.1.23], also called lysolecithin acyl-transferase and lysophosphatidylcholine acyltransferase, catalyzes the reaction of an acyl-CoA derivative with 1-acyl-5 n-glycero-3-phosphocholine to yield coenzyme A and l,2-diacyl-5 n-glycero-3-phosphocholine. The enzyme preferentially acts on unsaturated acyl-CoA derivatives, but l-acyl-5 n-glycero-3-phosphoinositol can also act as the acceptor. [Pg.30]

The only antimalarial drugs whose mechanisms of action are reasonably well understood are the drugs that inhibit the parasite s ability to synthesize folic acid. Parasites cannot use preformed folic acid and therefore must synthesize this compound from the following precursors obtained from their host p-aminobenzoic acid (PABA), pteridine, and glutamic acid. The dihydrofolic acid formed from these precursors must then be hydrogenated to form tetrahydrofoUc acid. The latter compound is the coenzyme that acts as an acceptor of a variety of one-carbon units. The transfer of one-carbon units is important in the synthesis of the pyrimidines and purines, which are essential in nucleic acid synthesis. [Pg.614]

Complex II. The succinate dehydrogenase complex, or complex IF, contains a non-haem iron-sulfur component and utilises the electron acceptor FAD to effect the transfer of electrons from FADH2 to coenzyme Q. Inhibitors of succinate dehydrogenase are specific basidio-mycete fungicides, with uses against smuts, bunts, and Rhizoctonia spp. (Figure 4.21). [Pg.97]


See other pages where Coenzyme acceptors is mentioned: [Pg.24]    [Pg.86]    [Pg.24]    [Pg.86]    [Pg.621]    [Pg.106]    [Pg.453]    [Pg.674]    [Pg.719]    [Pg.171]    [Pg.52]    [Pg.75]    [Pg.19]    [Pg.110]    [Pg.110]    [Pg.82]    [Pg.235]    [Pg.192]    [Pg.279]    [Pg.113]    [Pg.576]    [Pg.142]    [Pg.44]    [Pg.44]    [Pg.103]    [Pg.43]   
See also in sourсe #XX -- [ Pg.199 ]




SEARCH



© 2024 chempedia.info