Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coatings, polymers used

Acrylates are primarily used to prepare emulsion and solution polymers. The emulsion polymerization process provides high yields of polymers in a form suitable for a variety of appHcations. Acrylate polymer emulsions were first used as coatings for leather in the eady 1930s and have found wide utiHty as coatings, finishes, and binders for leather, textiles, and paper. Acrylate emulsions are used in the preparation of both interior and exterior paints, door poHshes, and adhesives. Solution polymers of acrylates, frequentiy with minor concentrations of other monomers, are employed in the preparation of industrial coatings. Polymers of acryHc acid can be used as superabsorbents in disposable diapers, as well as in formulation of superior, reduced-phosphate-level detergents. [Pg.148]

In other surfactant uses, dodecanol—tetradecanol is employed to prepare porous concrete (39), stearyl alcohol is used to make a polymer concrete (40), and lauryl alcohol is utilized for froth flotation of ores (41). A foamed composition of hexadecanol is used for textile printing (42) and a foamed composition of octadecanol is used for coating polymers (43). On the other hand, foam is controUed by detergent range alcohols in appHcations by lauryl alcohol in steel cleaning (44), by octadecanol in a detergent composition (45), and by eicosanol—docosanol in various systems (46). [Pg.449]

Syntactic Cellular Polymers. Syntactic cellular polymer is produced by dispersing rigid, foamed, microscopic particles in a fluid polymer and then stabilizing the system. The particles are generally spheres or microhalloons of phenoHc resin, urea—formaldehyde resin, glass, or siUca, ranging 30—120 lm dia. Commercial microhalloons have densities of approximately 144 kg/m (9 lbs/fT). The fluid polymers used are the usual coating resins, eg, epoxy resin, polyesters, and urea—formaldehyde resin. [Pg.408]

The production is primarily used for food (26.6%) and beverages (54.7%) however, some industrial appHcations (18.7%) exist, eg, coatings, polymers, and resins. (Historical patterns of use in the United States have been stable and are as noted in parentheses.) Over the past few years, the Hst price of malic acid has been stable. In the United States, the current Hst price for malic acid is 1.79/kg, deHvered and packaged in 50-lb (22.7-kg) bags (39). [Pg.523]

The properties of leather-like materials depend on the polymer used for substrate and coating layer. Feel, hand, and resistance to grain break are affected by the constmction. The polymers and constmctions of leather-like materials are shown in Table 1. Physical properties of leather and leather-like materials are shown in Table 2. [Pg.92]

Water-Vapor Permeability. Water-vapor permeabiUty depends on the polymer used for the coating layer and its stmcture. Vinyl-coated fabrics have Httie water-vapor permeabiUty due to the coating layer. Although polyurethane polymer is water-vapor permeable, urethane-coated fabrics also have low permeabiUty values due to their soHd layer stmcture. On the other hand, man-made leathers have good permeabiUty values as high as that of leather due to their porous layer stmcture. The permeabiUty of grain-type is lower than that of suede-type, influenced by finishing method. [Pg.92]

Polymers. The molecular weights of polymers used in high energy electron radiation-curable coating systems are ca 1,000—25,000 and the polymers usually contain acryUc, methacrylic, or fumaric vinyl unsaturation along or attached to the polymer backbone (4,48). Aromatic or aUphatic diisocyanates react with glycols or alcohol-terrninated polyether or polyester to form either isocyanate or hydroxyl functional polyurethane intermediates. The isocyanate functional polyurethane intermediates react with hydroxyl functional polyurethane and with acryUc or methacrylic acids to form reactive p olyurethanes. [Pg.428]

Principal uses include automotive V-belts, industrial and hydraulic hose, specialty roofing, heels and soles in footwear, wine coveting, and a wide variety of coated fabric uses, eg, rafts. Chloroprene elastomers are also used extensively in adhesives (qv). It is estimated that about 77,000 t of chloroprene are used each year in the United States. The two main suppHers of chloroprene elastomers in the United States are DuPont and Bayer. In addition, Distiguil (France) sells polymers through the A. Schulman Company. [Pg.233]

Acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, ethyl acetate, and tetrahydrofuran are solvents for vinyhdene chloride polymers used in lacquer coatings methyl ethyl ketone and tetrahydrofuran are most extensively employed. Toluene is used as a diluent for either. Lacquers prepared at 10—20 wt % polymer sohds in a solvent blend of two parts ketone and one part toluene have a viscosity of 20—1000 mPa-s (=cP). Lacquers can be prepared from polymers of very high vinyhdene chloride content in tetrahydrofuran—toluene mixtures and stored at room temperature. Methyl ethyl ketone lacquers must be prepared and maintained at 60—70°C or the lacquer forms a sohd gel. It is critical in the manufacture of polymers for a lacquer apphcation to maintain a fairly narrow compositional distribution in the polymer to achieve good dissolution properties. [Pg.442]

The most widely used sUicones are polymers of methyl(hydrogen)sUoxane and of dimethylsiloxane. Polydimethylsiloxane is the basic polymer used in sUicone repeUents. If the polymer is terminated with methyl groups it is inert however, if it is terminated with hydroxyl groups, it can be cross-linked. Continuous, durable coatings result from the use of curable blends of polydimethyl siloxane and polymethyl(hydrogen)sUoxane. The sUicone finish encapsulates individual fibers. [Pg.308]

Compatibility and Corrosion. Gas turbine fuels must be compatible with the elastomeric materials and metals used in fuel systems. Elastomers are used for O-rings, seals, and hoses as well as pump parts and tank coatings. Polymers tend to swell and to improve their sealing abiUty when in contact with aromatics, but degree of swell is a function of both elastomer-type and aromatic molecular weight. Rubbers can also be attacked by peroxides that form in fuels that are not properly inhibited (see Elastomers, synthetic Rubber, natural). [Pg.416]

Trichloroethane and other chlorinated solvents are used for vapor degreasing (84—90). Other uses include cold metal cleaning, printed ckcuit board cleaning, and as a solvent for inks, coatings, adhesives, and aerosols. 1,1,1-Trichloroethane is an excellent solvent for development of photoresist polymers used in printed ckcuit board manufacture (see Integrated circuits Photoconductivepolymers). [Pg.11]

Nail hardeners have been based on various proteia cross-linking agents. Only formaldehyde is widely used commercially. Contact with skin and inhalation must be avoided to preclude sensiti2ation and other adverse reactions. The popularity of products of this type is decreasiag because the polymers used ia nail elongators can be used to coat nails to iacrease the mechanical strength. [Pg.300]

If the rf source is applied to the analysis of conducting bulk samples its figures of merit are very similar to those of the dc source [4.208]. This is also shown by comparative depth-profile analyses of commercial coatings an steel [4.209, 4.210]. The capability of the rf source is, however, unsurpassed in the analysis of poorly or nonconducting materials, e.g. anodic alumina films [4.211], chemical vapor deposition (CVD)-coated tool steels [4.212], composite materials such as ceramic coated steel [4.213], coated glass surfaces [4.214], and polymer coatings [4.209, 4.215, 4.216]. These coatings are used for automotive body parts and consist of a number of distinct polymer layers on a metallic substrate. The total thickness of the paint layers is typically more than 100 pm. An example of a quantitative depth profile on prepainted metal-coated steel is shown as in Fig. 4.39. [Pg.230]

Other polymers used in the PSA industry include synthetic polyisoprenes and polybutadienes, styrene-butadiene rubbers, butadiene-acrylonitrile rubbers, polychloroprenes, and some polyisobutylenes. With the exception of pure polyisobutylenes, these polymer backbones retain some unsaturation, which makes them susceptible to oxidation and UV degradation. The rubbers require compounding with tackifiers and, if desired, plasticizers or oils to make them tacky. To improve performance and to make them more processible, diene-based polymers are typically compounded with additional stabilizers, chemical crosslinkers, and solvents for coating. Emulsion polymerized styrene butadiene rubbers (SBRs) are a common basis for PSA formulation [121]. The tackified SBR PSAs show improved cohesive strength as the Mooney viscosity and percent bound styrene in the rubber increases. The peel performance typically is best with 24—40% bound styrene in the rubber. To increase adhesion to polar surfaces, carboxylated SBRs have been used for PSA formulation. Blends of SBR and natural rubber are commonly used to improve long-term stability of the adhesives. [Pg.510]

Typically, the polar surface energy component of polymers used for release coatings is relatively small and the work of adhesion can be written simply as... [Pg.537]

Polymer and coating chemists use computer models to predict the properties of formulated products from the characteristics of the raw materials and processing conditions (1, 2). Usually, the chemist supplies the identification and amounts of the materials. The software retrieves raw material property data needed for the modelling calculations from a raw material database. However, the chemist often works with groups of materials that are used as a unit. For instance, intermediates used in multiple products or premixes are themselves formulated products, not raw materials in the sense of being purchased or basic chemical species. Also, some ingredients are often used in constant ratio. In these cases, experimentation and calculation are simplified if the chemist can refer to these sets of materials as a unit, even though the unit may not be part of the raw material database. [Pg.54]


See other pages where Coatings, polymers used is mentioned: [Pg.222]    [Pg.222]    [Pg.131]    [Pg.242]    [Pg.171]    [Pg.196]    [Pg.257]    [Pg.382]    [Pg.92]    [Pg.43]    [Pg.2]    [Pg.498]    [Pg.10]    [Pg.430]    [Pg.496]    [Pg.297]    [Pg.333]    [Pg.333]    [Pg.136]    [Pg.124]    [Pg.124]    [Pg.180]    [Pg.120]    [Pg.232]    [Pg.492]    [Pg.547]    [Pg.552]    [Pg.435]    [Pg.574]    [Pg.43]    [Pg.283]    [Pg.83]    [Pg.864]    [Pg.875]   
See also in sourсe #XX -- [ Pg.66 ]




SEARCH



Coating applications, pharmaceutical polymers used

Coating polymer latexes used

Polymer Compositions used for Emulsion-based Decorative Coatings

Polymer coatings

Polymers Used for Coatings

Use Coatings

© 2024 chempedia.info