Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Flasks Widmer

All the products of Clemmensen reductions contain small amounts of un-saturated hydrocarbons. These can be removed by repeated shaking with 10 per cent, of the volume of concentrated sulphuric acid until the acid is colourless or nearly so each shaking should be of about 5 minutes duration. The hydrocarbon is washed with water, 10 per cent, sodium carbonate solution, water (twice), dried with anhydreus magnesium or calcium sulphate, and finally distilled twice from a Claisen flask with fractionating side arm (or a Widmer flask) over sodium. [Pg.238]

In a 200 ml. distilling flask place 64 g. (50 ml.) of dry n-butyl bromide and 80 g. of dry silver nitrite (1). Insert a reflux condenser, carrying a cotton wool (or calcium chloride) guard tube, into the mouth of the flask and close the side arm with a small stopper. Allow the mixture to stand for 2 hours heat on a steam bath for 4 hours (some brown fumes are evolved), followed by 8 hours in an oil bath at 110°. Distil the mixture and collect the fraction of b.p. 149-151° as pure 1-nitro-n-butane (18 g.). A further small quantity may be obtained by distilling the fractions of low boihng point from a Widmer flask. [Pg.307]

Finally distil from a well-lagged Widmer flask (compare Figs. II, 24, 2-5) over a little sodium. Collect the cycZo hexyl ethyl ether at 148-150°. The yield is 21 g. If the sodium is appreciably attacked, repeat the distillation from a fresh quantity of sodium. [Pg.315]

Make a thin paste of 21 5 g. of finely-powdered o-tolidine (a commercial product) with 300 ml. of water in a 1-litre beaker, add 25 g. (21 ml.) of concentrated hydrochloric acid, and warm until dissolved. Cool the solution to 10° with ice, stir mechanically, and add a further 25 g. (21 ml.) of concentrated hydrochloric acid (1) partial separation of o tolidine dihydrochloride will occur. Add a solution of 15 g, of sodium nitrite in 30 ml. of water as rapidly as possible, but keep the temperature below 15° a slight excess of nitrous acid is not harmful in this preparation. Add the clear, orange tetrazonium solution to 175 ml. of 30 per cent, hypophosphorous acid (2), and allow the mixture to stand, loosely stoppered, at room temperature for 16-18 hours. Transfer to a separatory funnel, and remove the upper red oily layer. Extract the aqueous layer with 50 ml, of benzene. Dry the combined upper layer and benzene extract with anhydrous magnesium sulphate, and remove the benzene by distillation (compare Fig. II, 13, 4) from a Widmer or similar flask (Figs. II, 24, 3-5) heat in an oil bath to 150° to ensure the removal of the last traces of benzene. Distil the residue at ca. 3 mm. pressure and a temperature of 155°. Collect the 3 3 -dimethyldiphenyl as a pale yellow liquid at 114-115°/3 mm. raise the bath temperature to about 170° when the temperature of the thermometer in the flask commences to fall. The yield is 14 g. [Pg.616]

Methyl y-bromocrotonate. Mix 36 g. of iV-bromosuccinimide, 40 g. of methyl crotonate and 60 ml. of dry, redistilled carbon tetrachloride in a 500 ml. round bottomed flask. Reflux ou a water bath for 12 hours by this time all the sohd should have risen to the surface of the liquid. Filter off the succinimide at the pump and wash it with a little dry carbon tetrachloride. Remove the solvent on a water bath and distil the residue under reduced pressure, preferably from a Widmer flask (compare Figs. II, 24, 4-5). Collect the methyl y-bromocrotonate at 77-78°/8 mm. the yield is 31 g. [Pg.927]

Alternatively, an independent column (Fig. XII, 2, 8, c) may be inserted into a flask the column may be of the Vigreux, Widmer or Hempel form. The fractionating column should be lagged with asbestos cloth or string for distillation temperatures above 100° for the best results the column should be heated electrically (compare Section 11,15) to a temperature 5-10° below the b.p. of the fraction being collected. The side arm of the flask or fractionating column may be attached to a cold spot condenser and receiver as in Fig. XII, 2, 4 or to a Liebig s condenser and receiver as in Fig. XII, 2, 1. [Pg.1105]

Apparatus. 1-1 three-necked, round-bottomed flask, provided with a dropping funnel, combined with a thermometer, reaching into the liquid, a mechanical stirrer and a 40-cm Widmer column, connected with a condenser and a receiver, cooled at -20°C or lower. [Pg.190]

After cooling to about 40°C (note 2) the viscous brown liquid was poured into a vigorously stirred solution of 50 g of ammonium chloride in 250 ml of 4 N HCl, which was kept at 0-5°C. The flask was also rinsed with this solution. The product was extracted 5-7 times with a 1 1 mixture of diethyl ether and pentane. The combined extracts were washed with saturated NHi Cl solution and subsequently dried over magnesium sulfate. The residue remaining after removal of the solvents in a water-pump vacuum, was carefully distilled through a 30-cm Widmer column. The desired nitrile, b.p. 84°C/15 mmHg, n 1.4487, was obtained in 72% yield. The first fraction (about 5 g) consisted mainly of the 1,3-substitution product n-C,HgC(CsN)=C=CH2. [Pg.226]


See other pages where Flasks Widmer is mentioned: [Pg.117]    [Pg.118]    [Pg.170]    [Pg.236]    [Pg.237]    [Pg.240]    [Pg.305]    [Pg.323]    [Pg.374]    [Pg.384]    [Pg.409]    [Pg.467]    [Pg.676]    [Pg.736]    [Pg.880]    [Pg.899]    [Pg.900]    [Pg.69]    [Pg.108]    [Pg.133]    [Pg.149]    [Pg.173]    [Pg.187]    [Pg.220]    [Pg.230]    [Pg.181]    [Pg.27]    [Pg.117]    [Pg.118]    [Pg.170]    [Pg.236]    [Pg.237]    [Pg.305]    [Pg.323]    [Pg.374]    [Pg.384]    [Pg.409]    [Pg.467]   
See also in sourсe #XX -- [ Pg.117 ]

See also in sourсe #XX -- [ Pg.117 ]

See also in sourсe #XX -- [ Pg.117 ]




SEARCH



Flasks

Widmer

© 2024 chempedia.info