Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Citric Acid determination

The United States Standards for citrus juices, except lemon or lime products, specify that the citric acid determination (factor for citric acid equals 0.06A) be calculated as grams per 100 grams juice, e.g. [Pg.298]

H2. Hagelstam, L., Value of citric acid determination in serum for the differential diagnosis of diseases of the liver and bile ducts. Acta Chir. Scand. 90, 37 (1944). [Pg.107]

The formation of COi causes the trademark fizzing when the tablets are dropped into a glass of water. An Alka-Seltzer tablet contains 1.700 g of sodium bicarbonate and 1.000 g of citric acid. Determine, for a single tablet dissolved in water, (a) which ingredient is the limiting reactant, (b) what mass of the excess reactant is left over when the reaction is complete, and fc) what mass of CO forms. [Pg.93]

Arup PS (1938) citric acid determination in milk and milk products. Analyst 63 635-640 Reichard O (1936) Determination of citric acid in wine. Z Unters Lebensm 72 50-63 Taufel K, Schoierer K (1936) Determination of citric acid by conversion into acetone II. Z Unters Lebensm 71 297-310... [Pg.248]

Goldberg AS, BernheimAR (1944) Citric acid determination. J Biol Chem 156 33-46 Perlman D, Lardy HA, Johnson MJ (1944) Determination of citric acid in fermentation media and biological materials. Ind Eng Chem 19 515-516... [Pg.248]

Acetone was originally observed about 1595 as a product of the distillation of sugar of lead (lead acetate). In the nineteenth century it was obtained by the destmctive distillation of metal acetates, wood, and carbohydrates with lime, and pyrolysis of citric acid. Its composition was determined by Liebig and Dumas in 1832. [Pg.94]

Only acids are sour. Sourness is not identical to chemical acidity or pH, which is a function of the hydrogen ion concentration, but also appears to be a function of the entire acid molecule. A combination of pH and acid concentration determines the actual degree of the sour taste. At the same pH, any organic acid, eg, citric acid, exhibits a far greater sourness than a mineral acid, eg, hydrochloric acid (27,28). [Pg.11]

Inorganic heavy metals are usually removed from aqueous waste streams by chemical precipitation in various forms (carbonates, hydroxides, sulfide) at different pH values. The solubiUty curves for various metal hydroxides, when they are present alone, are shown in Figure 7. The presence of other metals and complexing agents (ammonia, citric acid, EDTA, etc) strongly affects these solubiUty curves and requires careful evaluation to determine the residual concentration values after treatment (see Table 9) (38,39). [Pg.228]

A high performance Hquid chromotography (hplc) method to determine citric acid and other organic acids has been developed (46). The method is an isocratic system using sulfuric acid to elute organic acids onto a specific hplc column. The method is sensitive for citric acid down to ppm levels and is capable of quantifying citric acid in clear aqueous systems. [Pg.185]

A determination by the method of Pucher, Vickery, and Leavenworth showed that 26 g. of citric acid remained in the sulfuric acid solution. It is inadvisable to use this solution for another run the accumulation of water and by-products reduces considerably the yield and the quality of the product. [Pg.2]

Add to the sample solution (containing 1 -25 g of Mo) 4 mL of 1 3 sulphuric acid, 3 drops of 85 per cent phosphoric(V) acid, and 0.5 g of citric acid. Dilute with water to 20 mL and add 2 mL of dithiol solution. Allow to stand at room temperature for 2 hours. Extract the molybdenum complex with 13 mL and 10 mL portions respectively of re-distilled butyl acetate, and make up to 25.0 mL with this solvent in a graduated flask filter through glass wool if not entirely clear. Determine the absorbance of the solution at 670 nm. Prepare a calibration curve as detailed in Section 6.14. [Pg.693]

The citric acid obtained from fermentation is removed from the culture by precipitation. The precipitation is formed by the addition of Ca(OH)2 200 gl , at 70 °C. The pH of solution is adjusted to 7.2. Tri-calcium citrate tetrahydrate is collected by filtration. The tricalcium citrate as filter cake is dissolved in H2S04 at 60 °C with 0.1% excess, the solid retained is CaS04 and the free citric acid is obtained. The free concentration of citric acid is determined with an enzymatic kit available from Merck. GC/HPLC is recommended for high accuracy of any research work.5... [Pg.285]

Ketogenesis is regulated at three cmcial steps (1) control of free fatty acid mobihzation from adipose tissue (2) the activity of carnitine palmitoyltransferase-1 in hver, which determines the proportion of the fatty acid flux that is oxidized rather than esteri-fied and (3) partition of acetyl-CoA between the pathway of ketogenesis and the citric acid cycle. [Pg.189]

Mato, I., Fluidobro, J. F., Cendon, V., Muniategui, S., Fernandez-Muino, M. A., and Sancho, M. T. (1998a). Enzymatic determination of citric acid in honey by using poly-vinylpoljrpyrrolidone clarification. /. Agric. Food Chem. 46, 141-144. [Pg.131]

Acids and bases are determined by their properties. The word acid comes from the Latin word acidus, which means sour. For example, lemon juice tastes sour because it contains citric acid. Sauerkraut, another sour-tasting food, is cabbage fermented in lactic acid. In fact, sauer (pronounced almost exactly like the English word sour) in German means acid. Sour cream also has lactic acid in it. [Pg.13]

Apoptosis assay. ECRF24 or A2780 cells were seeded on 6-well plates (2 X 105 cells/ well) and grown 24 hours in complete medium before treatment. Compounds 1-3 were freshly dissolved in DMSO, diluted in complete medium and added to the cells at the final concentrations indicated in Table 2. After incubation for 72 h apoptosis was measured by flow cytometric determination of subdiploid cells after DNA extraction and subsequent staining with propidium iodide (PI) as described previously10. Briefly, cells were harvested and subsequently fixed in 70% ethanol at —20°C. After 2 h the cells were re-suspended in DNA extraction buffer (45 mM Na2HP04, 2.5 mM citric acid, and 1% Triton X-100, pH 7.4) for 20 min at 37°C. PI was added to a final concentration of 20 pg/mL and log scale red fluorescence was analyzed on a FACSCalibur (BD Biosciences, NJ, U.S.). [Pg.5]

Acetylcholine is formed from acetyl CoA (produced as a byproduct of the citric acid and glycolytic pathways) and choline (component of membrane lipids) by the enzyme choline acetyltransferase (ChAT). Following release it is degraded in the extracellular space by the enzyme acetylcholinesterase (AChE) to acetate and choline. The formation of acetylcholine is limited by the intracellular concentration of choline, which is determined by the (re)uptake of choline into the nerve ending (Taylor Brown, 1994). [Pg.26]

A high performance capillary electrophoresis (HPCE) was described for the separation and simultaneous determination of OTC, TC, CTC, DC, and chloramphenicol in honey. The use of buffer pH 3.2 containing 0.02 mol/L Na2HP04 and 0.01 mol/L citric acid with addition of 4% (v/v) A-methylmorpholine and 12% (v/v) acetonitrile demonstrated a good separation of these five antibiotics within 20 min. The proposed method gave detection limit (signal to noise ratio > 5) of 20 pg/L for OTC [26],... [Pg.104]

Marnela et al. [57] used an amino acid analyzer using fluorescence detection to determine penicillamine in urine. Urine is analyzed on a Kontron Chromakon 500 amino acid analyzer containing a column (20 cm x 3.2 mm) of AS70 resin in the Li (I) form. Buffers containing LiOH, citric acid, methanol, HC1, and Brij 35 at pH 2.60, 3.20, and 3.60 are used as mobile phases (0.4 mL/h). The fluorescence reagent is prepared by the method of Benson and Hare. Detection is at 450 nm (excitation at 350 nm). The analyte response is linear from 0.025 to 10 mM, with a limit of detection of 25 pM. [Pg.145]

Bergstrom et al. [63] used HPLC for determination of penicillamine in body fluids. Proteins were precipitated from plasma and hemolyzed blood with trichloroacetic acid and metaphosphoric acid, respectively, and, after centrifugation, the supernatant solution was injected into the HPLC system via a 20-pL loop valve. Urine samples were directly injected after dilution with 0.4 M citric acid. Two columns (5 cm x 0.41 cm and 30 cm x 0.41 cm) packed with Zipax SCX (30 pm) were used as the guard and analytical columns, respectively. The mobile phase (2.5 mL/min) was deoxygenated 0.03 M citric acid-0.01 M Na2HP04 buffer, and use was made of an electrochemical detector equipped with a three-electrode thin-layer cell. The method was selective and sensitive for mercapto-compounds. Recoveries of penicillamine averaged 101% from plasma and 107% from urine, with coefficients of variation equal to 3.68 and 4.25%, respectively. The limits of detection for penicillamine were 0.5 pm and 3 pm in plasma and in urine, respectively. This method is selective and sensitive for sulfhydryl compounds. [Pg.146]

Guevremont et al. [117] studied the use of various matrix modifiers in the graphite furnace gas method of determination of cadmium in seawater. These included citric acid, lactic acid, aspartic acid, histidine, and EDTA. The addition of less than 1 mg of any of the compounds to 1 ml seawater significantly decreased matrix interference. Citric acid achieved the highest sensitivity and reduction of interference, with a detection limit of 0.01 pg cadmium per litre. [Pg.148]

Electrothermal atomic absorption spectrophotometry with Zeeman background correction was used by Zhang et al. [141] for the determination of cadmium in seawater. Citric acid was used as an organic matrix modifier and was found to be more effective than EDTA or ascorbic acid. The organic matrix modifier reduced the interferences from salts and other trace metals and gave a linear calibration curve for cadmium at concentrations < 1.6 pg/1. The method has a limit of detection of 0.019 pg/1 of cadmium and recoveries of 95-105% at the 0.2 pg of cadmium level. [Pg.151]

Other cationic surfactants such as TTAB, DTAB, DODAB, STAC, CEDAB, and DDDAB have been used in CL reactions with less frequency. Thus, tetradecyltrimethylammonium bromide [TTAB] has been used to increase the sensitivity of the method to determine Fe(II) and total Fe based on the catalytic action of Fe(II) in the oxidation of luminol with hydrogen peroxide in an alkaline medium [47], While other surfactants such as HTAB, hexadecylpiridinium bromide (HPB), Brij-35, and SDS do not enhance the CL intensity, TTAB shows a maximum enhancement at a concentration of 2.7 X 10 2 M (Fig. 11). At the same time it was found that the catalytic effect of Fe(II) is extremely efficient in the presence of citric acid. With regard to the mechanism of the reaction, it is thought that Fe(II) forms an anionic complex with citric acid, being later concentrated on the surface of the TTAB cationic micelle. The complex reacts with the hydrogen peroxide to form hydroxy radical or superoxide ion on the... [Pg.302]

Widespread medicinal use of colloidal bismuth subcitrate (CBS) has prompted extensive studies of bismuth compounds involving the citrate anion. Bismuth citrate is essentially insoluble in water, but a dramatic increase in solubility with increasing pH has been exploited as a bio-ready source of soluble bismuth, a material referred to as CBS. Formulation of these solutions is complicated by the variability of the bismuth anion stoichiometry, the presence of potassium and/ or ammonium cations, the susceptibility of bismuth to oxygenation to Bi=0, and the incorporation of water in isolated solids. Consequently, a variety of formulas are classified in the literature as CBS. Solids isolated from various, often ill-defined combinations of bismuth citrate, citric acid, potassium hydroxide, or ammonium hydroxide have been assigned formulas on the basis of elemental analysis data or by determination of water and ammonia content, but are of low significance in the absence of complementary data other than thermal analysis (163), infrared spectroscopy (163), or NMR spectroscopy (164). In this context, the Merck index lists the chemical formula of CBS as KgfNHJaBieOafOHMCeHsCbh in the 11th edition (165), but in the most recent edition provides a less precise name, tripotassium dicitrato bismuthate (166). [Pg.336]

The best understood in structural terms are the citrate complexes for which about seven X-ray structures have been determined (452), none of which has exactly the same composition as the drugs themselves (453). The dominant feature is the dimeric [(cit)BiBi(cit)]2-unit, where citric acid is H4cit, which contains bridging citrate anions (Fig. 20). The Bi-O(alkoxide) bond is very short (2.2 A) and strong,... [Pg.259]

Chen et al. (1997a) analysed sodium saccharin in soft drinks, orange juice and lemon tea after filtration by injection into an ion-exclusion column with detection at 202 nm. Recoveries of 98-104% were obtained. They reported that common organic acids like citric and malic and other sweeteners did not interfere. Qu et al. (1999) determined aspartame in fruit juices, after degassing and dilution in water, by IC-PAD. The decomposition products of aspartame, aspartic acid and phenylanaline were separated and other sweeteners did not interfere. The recoveries of added aspartame were 77-94%. Chen et al. (1997b) separated and determined four artificial sweeteners and citric acid. [Pg.123]

This technique has been established for many years particularly for water, soil and feeding-stuff analysis, where a large number of analyses are required for quality control or monitoring purposes. A number of applications have been published for food additives including aspartame (Fatibello et al., 1999), citric acid (Prodromidis et al., 1997), chloride, nitrite and nitrate (Ferreira et al., 1996), cyclamates (Cabero et al., 1999), sulphites (Huang et al., 1999 AOAC Int, 2000), and carbonate, sulphite and acetate (Shi et al., 1996). Yebra-Biumm (2000) reviewed the determination of artificial sweeteners (saccharin, aspartame and cyclamate) by flow injection. [Pg.126]

There is increasing interest in the use of specific sensor or biosensor detection systems with the FIA technique (Galensa, 1998). Tsafack et al. (2000) described an electrochemiluminescence-based fibre optic biosensor for choline with flow-injection analysis and Su et al. (1998) reported a flow-injection determination of sulphite in wines and fruit juices using a bulk acoustic wave impedance sensor coupled to a membrane separation technique. Prodromidis et al. (1997) also coupled a biosensor with an FIA system for analysis of citric acid in juices, fruits and sports beverages and Okawa et al. (1998) reported a procedure for the simultaneous determination of ascorbic acid and glucose in soft drinks with an electrochemical filter/biosensor FIA system. [Pg.126]

LOZANO A, ALEGRIA A, BARBERA R, FARRE R and LARGARDA M J (1998), Evaluation of methods for determining ascorbic acid, citric acid, lactose and maltodextrins in infant juices and formulas , Alimentaria, 298, 95-99. [Pg.133]


See other pages where Citric Acid determination is mentioned: [Pg.307]    [Pg.350]    [Pg.388]    [Pg.114]    [Pg.218]    [Pg.901]    [Pg.182]    [Pg.277]    [Pg.283]    [Pg.139]    [Pg.406]    [Pg.485]    [Pg.216]    [Pg.114]    [Pg.97]    [Pg.191]    [Pg.4]    [Pg.584]    [Pg.94]    [Pg.207]    [Pg.896]   
See also in sourсe #XX -- [ Pg.130 ]




SEARCH



Acidity, determination

Acidity, determining

Qualitative and Quantitative Determination of Citric Acid

© 2024 chempedia.info