Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phospholipids chylomicron

Chylomicron TG is derived almost entirely from dietary fatty acids. Chylomicron CE is derived almost entirely from dietary cholesterol internalized by the intestinal epithelial cells and esterified with dietary fatty acids. On the other hand, chylomicron phospholipids contain a considerable amount of fatty acids that are synthesized in the intestine. The cholesterol of chylomicrons is added extracellularly, mainly by transfer from HDLs. In addition, chylomicrons contain small but significant amounts of lipid vitamins. [Pg.537]

Data have indicated that chylomicron phospholipids (Havel and Clark, 1958 McCandless and Zilversmit, 1958 Minari and Zilversmit, 1963), free cholesterol (Minari and Zilversmit, 1963), and protein (Hoffman, 1960 Scanu and Page, 1961) undergo an exchange or transfer process with the corresponding components of soluble lipoproteins, leading to either a net loss or renewal of these fractions in chylomicrons prior to their removal from pla.sma. The degree of modification of the chylomicron particles by lipoproteins of circulating plasma is worth definition since it bears directly on the problem of their uptake. [Pg.88]

The nonpolar lipid core consists of mainly triacylglycerol and cholesteryl ester and is surrounded by a single surface layer of amphipathic phospholipid and cholesterol molecules (Figure 25-1). These are oriented so that their polar groups face outward to the aqueous medium, as in the cell membrane (Chapter 14). The protein moiety of a lipoprotein is known as an apo-lipoprotein or apoprotein, constituting nearly 70% of some HDL and as litde as 1% of chylomicrons. Some apolipoproteins are integral and cannot be removed, whereas others are free to transfer to other hpoproteins. [Pg.205]

Chylomicron remnants Chylomicrons 45-150 <1.006 6-8 92-94 Triacylglycerol, phospholipids, cholesterol B-48, E... [Pg.206]

Figure 25-3. Metabolic fate of chylomicrons. (A, apolipoprotein A B-48, apolipoprotein B-48 , apolipoprotein C E, apolipoprotein E HDL, high-density lipoprotein TG, triacylgiycerol C, cholesterol and cholesteryl ester P, phospholipid HL, hepatic lipase LRP, LDL receptor-reiated protein.) Only the predominant lipids are shown. Figure 25-3. Metabolic fate of chylomicrons. (A, apolipoprotein A B-48, apolipoprotein B-48 , apolipoprotein C E, apolipoprotein E HDL, high-density lipoprotein TG, triacylgiycerol C, cholesterol and cholesteryl ester P, phospholipid HL, hepatic lipase LRP, LDL receptor-reiated protein.) Only the predominant lipids are shown.
HDL concentrations vary reciprocally with plasma triacylglycerol concentrations and directly with the activity of lipoprotein lipase. This may be due to surplus surface constituents, eg, phospholipid and apo A-I being released during hydrolysis of chylomicrons and VLDL and contributing toward the formation of preP-HDL and discoidal HDL. HDLj concentrations are inversely related to the incidence of coronary atherosclerosis, possibly because they reflect the efficiency of reverse cholesterol transport. HDL, (HDLj) is found in... [Pg.210]

Figure 25-5. Metabolism of high-density lipoprotein (HDL) in reverse cholesteroi transport. (LCAT, lecithinxholesterol acyltransferase C, cholesterol CE, cholesteryl ester PL, phospholipid A-l, apolipoprotein A-l SR-Bl, scavenger receptor B1 ABC-1, ATP binding cassette transporter 1.) Prep-HDL, HDLj, HDL3—see Table 25-1. Surplus surface constituents from the action of lipoprotein lipase on chylomicrons and VLDL are another source of preP-HDL. Hepatic lipase activity is increased by androgens and decreased by estrogens, which may account for higher concentrations of plasma HDLj in women. Figure 25-5. Metabolism of high-density lipoprotein (HDL) in reverse cholesteroi transport. (LCAT, lecithinxholesterol acyltransferase C, cholesterol CE, cholesteryl ester PL, phospholipid A-l, apolipoprotein A-l SR-Bl, scavenger receptor B1 ABC-1, ATP binding cassette transporter 1.) Prep-HDL, HDLj, HDL3—see Table 25-1. Surplus surface constituents from the action of lipoprotein lipase on chylomicrons and VLDL are another source of preP-HDL. Hepatic lipase activity is increased by androgens and decreased by estrogens, which may account for higher concentrations of plasma HDLj in women.
Lipoproteins. A lipoprotein is an endogenous macromolecule consisting of an inner apolar core of cholesteryl esters and triglycerides surrounded by a monolayer of phospholipid embedded with cholesterol and apoproteins. The functions of lipoproteins are to transport lipids and to mediate lipid metabolism. There are four main types of lipoproteins (classified based on their flotation rates in salt solutions) chylomicrons, very-low-density lipoprotein (VLDL), low-density lipoprotein (LDL), and high-density lipoprotein (HDL). These differ in size, molecular weight, and density and have different lipid, protein, and apoprotein compositions (Table 11). The apoproteins are important determinants in the metabolism of lipoproteins—they serve as ligands for lipoprotein receptors and as mediators in lipoproteins interconversion by enzymes. [Pg.557]

J. Luchoomun and M. M. Hussain, Assembly and secretion of chylomicrons by differentiated Caco-2 cells. Nascent triglycerides and preformed phospholipids are preferentially used for lipoprotein assembly, J. Biol. Chem. 274 (1999) 19565-19572. [Pg.378]

Chylomicrons are assembled from dietary triglyceride (containing predominantly the longer-chain fatty adds) and cholesterol esters by intestinal epithelial cells. The core lipid is surrounded by phospholipids similar to those found in cell membranes, which increase the solubility of chylomicrons in lymph and blood. ApoB-48 is attached and required for release from the epithelial cells into the lymphatics. [Pg.214]

VLDLs, IDLs, and LDLs are closely related to one another. VLDLs formed in the liver (see p. 312) transport triacylglycerols, cholesterol, and phospholipids to other tissues. Like chylomicrons, they are gradually converted into IDL and LDL under the influence of lipoprotein lipase [1]. This process is also stimulated by HDL. Cells that have a demand for cholesterol bind LDL through an interaction between their LDL receptor and ApoB-100, and then take up the complete particle through receptor-mediated endocytosis. This type of transport is mediated by depressions in the membrane ( coated pits"), the interior of which is lined with the protein clathrin. After LDL binding, clathrin promotes invagination of the pits and pinching off of vesicles ( coated vesicles"). The clathrin then dissociates off and is reused. After fusion of the vesicle with ly-sosomes, the LDL particles are broken down (see p. 234), and cholesterol and other lipids are used by the cells. [Pg.278]

Lipid metabolism in the liver is closely linked to the carbohydrate and amino acid metabolism. When there is a good supply of nutrients in the resorptive (wellfed) state (see p. 308), the liver converts glucose via acetyl CoA into fatty acids. The liver can also take up fatty acids from chylomicrons, which are supplied by the intestine, or from fatty acid-albumin complexes (see p. 162). Fatty acids from both sources are converted into fats and phospholipids. Together with apoproteins, they are packed into very-low-density lipoproteins (VLDLs see p.278) and then released into the blood by exocytosis. The VLDLs supply extrahepatic tissue, particularly adipose tissue and muscle. [Pg.312]

High-density lipoproteins are formed in the liver and intestines as a result of catabolism of chylomicrons and very low-density lipoproteins, and in comparison with other lipoproteins, they contain considerably more cholesterol esters with unsaturated fatty acids, as well as phospholipids and specific proteins. [Pg.269]

The triacylglycerols and cholesteryl esters form the hydrophobic core of the chylomicrons, which are coated with surface phospholipids, free cholesterol, and apolipoprotein B-48. [Pg.104]

Lipoproteins have hydrophobic core regions containing cholesteryl esters and triglycerides surrounded by unesterified cholesterol, phospholipids, and apoproteins. Certain lipoproteins contain very high-molecular-weight proteins that exist in two forms B-48, formed in the intestine and found in chylomicrons and their remnants and B-lOO, synthesized in liver and found in VLDL, VLDL remnants(IDL),LDL (formed from VLDL), and Lp(a) lipoproteins. HDL consist of at least 15 discrete molecular species. All species contain apolipoprotein A-I (apoA-I). Fifty-three other proteins are known to be distributed variously among the HDL species. [Pg.777]

Fig. 5.2.1 The major metabolic pathways of the lipoprotein metabolism are shown. Chylomicrons (Chylo) are secreted from the intestine and are metabolized by lipoprotein lipase (LPL) before the remnants are taken up by the liver. The liver secretes very-low-density lipoproteins (VLDL) to distribute lipids to the periphery. These VLDL are hydrolyzed by LPL and hepatic lipase (HL) to result in intermediate-density lipoproteins (IDL) and low-density lipoproteins (LDL), respectively, which then is cleared from the blood by the LDL receptor (LDLR). The liver and the intestine secrete apolipoprotein AI, which forms pre-jS-high-density lipoproteins (pre-jl-HDL) in blood. These pre-/ -HDL accept phospholipids and cholesterol from hepatic and peripheral cells through the activity of the ATP binding cassette transporter Al. Subsequent cholesterol esterification by lecithinxholesterol acyltransferase (LCAT) and transfer of phospholipids by phospholipid transfer protein (PLTP) transform the nascent discoidal high-density lipoproteins (HDL disc) into a spherical particle and increase the size to HDL2. For the elimination of cholesterol from HDL, two possible pathways exist (1) direct hepatic uptake of lipids through scavenger receptor B1 (SR-BI) and HL, and (2) cholesteryl ester transfer protein (CfiTP)-mediated transfer of cholesterol-esters from HDL2 to chylomicrons, and VLDL and hepatic uptake of the lipids via the LDLR pathway... Fig. 5.2.1 The major metabolic pathways of the lipoprotein metabolism are shown. Chylomicrons (Chylo) are secreted from the intestine and are metabolized by lipoprotein lipase (LPL) before the remnants are taken up by the liver. The liver secretes very-low-density lipoproteins (VLDL) to distribute lipids to the periphery. These VLDL are hydrolyzed by LPL and hepatic lipase (HL) to result in intermediate-density lipoproteins (IDL) and low-density lipoproteins (LDL), respectively, which then is cleared from the blood by the LDL receptor (LDLR). The liver and the intestine secrete apolipoprotein AI, which forms pre-jS-high-density lipoproteins (pre-jl-HDL) in blood. These pre-/ -HDL accept phospholipids and cholesterol from hepatic and peripheral cells through the activity of the ATP binding cassette transporter Al. Subsequent cholesterol esterification by lecithinxholesterol acyltransferase (LCAT) and transfer of phospholipids by phospholipid transfer protein (PLTP) transform the nascent discoidal high-density lipoproteins (HDL disc) into a spherical particle and increase the size to HDL2. For the elimination of cholesterol from HDL, two possible pathways exist (1) direct hepatic uptake of lipids through scavenger receptor B1 (SR-BI) and HL, and (2) cholesteryl ester transfer protein (CfiTP)-mediated transfer of cholesterol-esters from HDL2 to chylomicrons, and VLDL and hepatic uptake of the lipids via the LDLR pathway...
The HDL lipids are removed from the circulation by a selective uptake and by an indirect pathway. The selective uptake of cholesterol esters from HDL into he-patocytes and steroidogenic cells is mediated by the binding of HDL to scavenger receptor B1 (SR-BI). This selective uptake by SR-BI may depend on the presence of cofactors such as HL, which hydrolyses phospholipids on the surface of both HDL and plasma membranes and thereby enables the flux of cholesteryl esters from the lipoprotein core into the plasma membrane [42]. The indirect pathway involves the enzyme CETP, which exchanges cholesteryl esters of a-HDL with triglycerides of chylomicrons, VLDL, IDL, and LDL. The a-HDL derived cholesteryl esters are therefore removed via the LDL-receptor pathway. The removal of excess cholesterol from the periphery and the delivery to the liver for excretion in the bile is termed reverse cholesterol transport. [Pg.499]

Whereas LPL predominantly hydrolyzes triglycerides in chylomicrons and VLDL, it has been shown that HL primarily hydrolyzes triglycerides and phospholipids from small VLDL, IDL, and HDL [82]. Like LPL, HL binds to the endothelium through heparan sulfate proteoglycans and is released upon heparin administration because of its higher affinity for heparin than for the endogenous heparan sulfate proteoglycans. Intravenous injection of a heparin bolus displaces the HL enzyme into postheparin plasma, where its activity can be quantified. [Pg.515]

RGURE 17-2 Molecular structure of a chylomicron. The surface is a layer of phospholipids, with head groups facing the aqueous phase. Triacylglycerolssequestered in theinterior (yellow) make up more than 80% of the mass. Several apolipoproteins that protrude from the surface (B-48, C-lll, C-ll) act as signals in the uptake and metabolism of chylomicron contents. The diameter of chylomicrons ranges from about 100 to 500 nm. [Pg.633]

Fate of the remaining chylomicron components After most of tt triacylglycerol has been removed, the chylomicron remnan (which contain cholesteryl esters, phospholipids, apolipoprotein and some triacylglycerol) bind to receptors on the liver (seej 228) and are then endocytosed. The remnants are the hydrolyzed to their component parts. Cholesterol and the nitrogf nous bases of phopholipids (for example, choline) can be req cled by the body. [Note If removal of chylomicron remnants by th liver is defective, they accumulate in the plasma. This is seen i type III hyperlipoproteinemia (also called familial dysbetalipopro teinemia, see p. 229). [Pg.176]

In adipose tissue, TAG is stored in the cytosol of the cells in a nearly anhydrous form. It serves as "depot fat," ready for mobilization when the body requires it for fuel. Little TAG is stored in the liver. Instead, most is exported, packaged with cholesteryl esters, cholesterol, phospholipid, and protein (apolipoprotein B-100, see p. 229) to form lipoprotein particles called very low density lipoproteins (VLDL). Nascent VLDL are secreted into the blood where they mature and function to deliver the endogenously-derived lipids to the peripheral tissues. [Note Recall that chylomicrons deliver primarily dietary (exogenously-derived) lipids.] Plasma lipoproteins are discussed in Chapter 18, p. 225. [Pg.187]

Assembly of chylomicrons The enzymes involved in triacylglycerol, cholesterol, and phospholipid synthesis are located in Ihe smooth ER. Assembly of the apolipoproteins and lipid into chylomicrons requires microsomal triacylglycerol transfer protein (see p. 229), which loads apo B-48 with lipid. This occurs during transition from the ER to the Golgi, where the particles are packaged in secretory vesicles. These fuse with the plasma membrane releasing the lipoproteins, which then enter the lymphatic system and, ultimately, the blood. [Pg.226]

The plasma lipoproteins include chylomicrons, very-low-density lipoproteins (VLDL), low-density lipoproteins (LDL), and high-density lipoproteins (HDL). They function to keep lipids (primarily triacylglyc-erol and cholesteryl esters) soluble as they transport them between tissues. Lipoproteins are composed of a neutral lipid core (containing triacylglycerol, cholesteryl esters, or both) surrounded by a shell of amphipathic apolipoproteins, phospholipid, and nonesterified cholesterol. Chylomicrons are assembled in intestinal mucosal cells from dietary lipids (primarily, triacylglycerol) plus additional lipids synthesized in these cells. Each nascent chylomicron particle has one molecule of apolipoprotein B-48 (apo B-48). They are released from the cells into the lymphatic system and travel to the blood, where they receive apo C-ll and apo E from HDLs, thus making the chylomicrons functional. Apo C-ll activates lipoprotein lipase, which degrades the... [Pg.239]

The mixture of lipids moves to the endoplasmic reticulum, where fatty acyl CoA synthetase converts free fatty acids into their activated CoA derivatives. Fatty acyl CoAs are then used to produce triacylglycerols, cholesteryl esters, and phospholipids. These, together with the fat-soluble vitamins (A, D, E, and K) and a single protein (apolipoprotein B-48), form a chylomicron, which is secreted into the lymphatic system and carried to the blood. [Pg.484]

The plasma lipoproteins are made mainly in the liver and intestine. In the rat, approximately 80% of the plasma apoproteins originate from the liver the rest are derived from the intestine. The components of chylomicrons, including apoproteins A-I, A-IV, and B-48 phospholipid cholesterol cholesteryl ester and triacylglycerols, are products of the intestinal cells. Chylomicrons are secreted into lymphatic capillaries, which eventually enter the bloodstream. The liver is the major source of VLDLs and HDLs. [Pg.470]

As the lipoproteins are depleted of triacylglycerol, the particles become smaller. Some of the surface molecules (apoproteins, phospholipids) are transferred to HDL. In the rat, remnants that result from chylomicron catabolism are removed by the liver. The uptake of remnant VLDL also occurs, but much of the triacylglycerol is further degraded by lipoprotein lipase to give the intermediate-density lipoprotein (IDL). This particle is converted into LDL via the action of lipoprotein lipase and enriched in cholesteryl ester via transfer from HDL by the cholesteryl ester transfer protein. The half-life for clearance of chylomicrons from plasma of humans is 4-5 min. Patients with the inherited disease, lipoprotein lipase deficiency, clear chylomicrons from the plasma very slowly. When on a normal diet, the blood from these patients looks like tomato soup. A very-low-fat diet greatly relieves this problem. [Pg.471]


See other pages where Phospholipids chylomicron is mentioned: [Pg.295]    [Pg.333]    [Pg.295]    [Pg.333]    [Pg.122]    [Pg.696]    [Pg.697]    [Pg.205]    [Pg.176]    [Pg.177]    [Pg.559]    [Pg.302]    [Pg.268]    [Pg.79]    [Pg.129]    [Pg.129]    [Pg.129]    [Pg.500]    [Pg.632]    [Pg.175]    [Pg.635]    [Pg.1182]    [Pg.1185]    [Pg.481]    [Pg.209]    [Pg.112]   
See also in sourсe #XX -- [ Pg.537 ]




SEARCH



Chylomicrons

© 2024 chempedia.info