Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cholesterol reverse

Absence of LCAT leads to inability of HDLs to take up cholesterol (reverse cholesterol transport)... [Pg.104]

The precise relationship between plasma A-I particle concentration and the development of atherosclerosis remains to be elucidated. Appearance of the LpA-I particle may be the reflection of the triglyceride-rich particle lipolysis in plasma. Decrease in LpA-I may be the link between atherosclerosis risk and a defective clearance of plasma triglycerides. However, our results on adipocytes suggest that a decrease in LpA-I may reflect a defect in cholesterol reverse transport. [Pg.20]

Due to its effect on HDL cholesterol it has been suggested that moderate alcohol consumption may be protective against coronary artery disease. In order to test the effect of alcohol on Apo A-I containing particles we have measured LpA-I and LpA-I A-II in plasma from 350 male subjects matched for age and clinical data. These subjects have been divided into five groups according to their alcohol consumption. The results confirm that alcohol consumption increases HDL cholesterol by 31%, but more remarkable is the fact that alcohol increases LpA-I A-II particles, while it decreases LpA-I particles (Fig. 3). Thus, the increase in HDL cholesterol upon alcohol consumption reflects the increase of LpA-I A-II, hiding the decrease in LpA-I, the lipoprotein particles probably involved in cholesterol reverse transport. [Pg.21]

Ketone body synthesis occurs only in the mitochondrial matrix. The reactions responsible for the formation of ketone bodies are shown in Figure 24.28. The first reaction—the condensation of two molecules of acetyl-CoA to form acetoacetyl-CoA—is catalyzed by thiolase, which is also known as acetoacetyl-CoA thiolase or acetyl-CoA acetyltransferase. This is the same enzyme that carries out the thiolase reaction in /3-oxidation, but here it runs in reverse. The second reaction adds another molecule of acetyl-CoA to give (i-hydroxy-(i-methyl-glutaryl-CoA, commonly abbreviated HMG-CoA. These two mitochondrial matrix reactions are analogous to the first two steps in cholesterol biosynthesis, a cytosolic process, as we shall see in Chapter 25. HMG-CoA is converted to acetoacetate and acetyl-CoA by the action of HMG-CoA lyase in a mixed aldol-Claisen ester cleavage reaction. This reaction is mechanistically similar to the reverse of the citrate synthase reaction in the TCA cycle. A membrane-bound enzyme, /3-hydroxybutyrate dehydrogenase, then can reduce acetoacetate to /3-hydroxybutyrate. [Pg.798]

The pathways of HDL metabolism and reverse cholesterol transport are complex (Fig. 3, [1]). HDL and its major apolipoprotein apoA-I are synthesized by both the intestine and the liver. A second major... [Pg.697]

Lipoprotein Metabolism. Figure 3 HDL metabolism and reverse cholesterol transport. [Pg.698]

Macrophage/athero- t Reverse cholesterol transport from foam cells l Progression of atherosclerosis... [Pg.943]

An increase in serum lipids is believed to contribute to or cause atherosclerosis, a disease characterized by deposits of fatty plaques on the inner walls of arteries. These deposits result in a narrowing of the lumen (inside diameter) of the artery and a decrease in blood supply to the area served by the artery. When these fatty deposits occur in the coronary arteries, the patient experiences coronary artery disease. Lowering blood cholesterol levels can arrest or reverse atherosclerosis in the vessels and can significantly decrease the incidence of heart disease. [Pg.408]

HDL concentrations vary reciprocally with plasma triacylglycerol concentrations and directly with the activity of lipoprotein lipase. This may be due to surplus surface constituents, eg, phospholipid and apo A-I being released during hydrolysis of chylomicrons and VLDL and contributing toward the formation of preP-HDL and discoidal HDL. HDLj concentrations are inversely related to the incidence of coronary atherosclerosis, possibly because they reflect the efficiency of reverse cholesterol transport. HDL, (HDLj) is found in... [Pg.210]

Figure 25-5. Metabolism of high-density lipoprotein (HDL) in reverse cholesteroi transport. (LCAT, lecithinxholesterol acyltransferase C, cholesterol CE, cholesteryl ester PL, phospholipid A-l, apolipoprotein A-l SR-Bl, scavenger receptor B1 ABC-1, ATP binding cassette transporter 1.) Prep-HDL, HDLj, HDL3—see Table 25-1. Surplus surface constituents from the action of lipoprotein lipase on chylomicrons and VLDL are another source of preP-HDL. Hepatic lipase activity is increased by androgens and decreased by estrogens, which may account for higher concentrations of plasma HDLj in women. Figure 25-5. Metabolism of high-density lipoprotein (HDL) in reverse cholesteroi transport. (LCAT, lecithinxholesterol acyltransferase C, cholesterol CE, cholesteryl ester PL, phospholipid A-l, apolipoprotein A-l SR-Bl, scavenger receptor B1 ABC-1, ATP binding cassette transporter 1.) Prep-HDL, HDLj, HDL3—see Table 25-1. Surplus surface constituents from the action of lipoprotein lipase on chylomicrons and VLDL are another source of preP-HDL. Hepatic lipase activity is increased by androgens and decreased by estrogens, which may account for higher concentrations of plasma HDLj in women.
Four major groups of lipoproteins are recognized Chylomicrons transport lipids resulting from digestion and absorption. Very low density lipoproteins (VLDL) transport triacylglycerol from the liver. Low-density lipoproteins (LDL) deliver cholesterol to the tissues, and high-density lipoproteins (HDL) remove cholesterol from the tissues in the process known as reverse cholesterol transport. [Pg.217]

Figure 26-5. Factors affecting cholesterol balance at the cellular level. Reverse cholesterol transport may be initiated by pre 3 HDL binding to the ABC-1 transporter protein via apo A-l. Cholesterol is then moved out of the cell via the transporter, lipidating the HDL, and the larger particles then dissociate from the ABC-1 molecule. (C, cholesterol CE, cholesteryl ester PL, phospholipid ACAT, acyl-CoA cholesterol acyltransferase LCAT, lecithinicholesterol acyltransferase A-l, apolipoprotein A-l LDL, low-density lipoprotein VLDL, very low density lipoprotein.) LDL and HDL are not shown to scale. Figure 26-5. Factors affecting cholesterol balance at the cellular level. Reverse cholesterol transport may be initiated by pre 3 HDL binding to the ABC-1 transporter protein via apo A-l. Cholesterol is then moved out of the cell via the transporter, lipidating the HDL, and the larger particles then dissociate from the ABC-1 molecule. (C, cholesterol CE, cholesteryl ester PL, phospholipid ACAT, acyl-CoA cholesterol acyltransferase LCAT, lecithinicholesterol acyltransferase A-l, apolipoprotein A-l LDL, low-density lipoprotein VLDL, very low density lipoprotein.) LDL and HDL are not shown to scale.
Familial lecithimcholesterol acyltransferase (LCAT) deficiency Absence of LCAT leads to block in reverse cholesterol transport. HDL remains as nascent disks incapable of taking up and esterifying cholesterol. Plasma concentrations of cholesteryl esters and lysolecithin are low. Present is an abnormal LDL fraction, lipoprotein X, found also in patients with cholestasis. VLDL is abnormal ( 3-VLDL). [Pg.228]

Unlike heliantholysin and congeners, the toxicity of metridiolysin is not prevented by sphingomyelin, but is inhibited by cholesterol in low concentration, as well as by certain related sterols (23). In addition, metridiolysin is activated by thiols such as dithiothreitol, and is reversibly inactivated by compounds having an affinity for SH-groups, such as p-hydroxy-mercuribenzoate. A third notable feature is that the action of metridiolysin on membranes involves, or is associated with, the formation of 33 nm rings demonstrable by electron microscopy of negatively stained preparations. [Pg.308]

Zarzycki and coworkers [77] studied the influence of temperature on the separation of cholesterol and bile acids using reversed-phase stationary phases. The best chromatographic conditions for the separation of mnlticomponent samples of steroids were chosen. Experiments were performed on wettable plates with RP-18W and at the temperatnres of 5, 10, 20, 30, 40, 50, and 60°C. The studies showed (Figure 9.9) that the degree of separation in the high-temperature region can be increased by an improvement of the efficiency of the chromatographic system. However, a relatively weak retention-temperatnre response for the studied steroids was observed. [Pg.221]

If simple sample pretreatment procedures are insufficient to simplify the complex matrix often observed in process mixtures, multidimensional chromatography may be required. Manual fraction collection from one separation mode and re-injection into a second mode are impractical, so automatic collection and reinjection techniques are preferred. For example, a programmed temperature vaporizer has been used to transfer fractions of sterols such as cholesterol and stigmasterol from a reversed phase HPLC system to a gas chromatographic system.11 Interfacing gel permeation HPLC and supercritical fluid chromatography is useful for nonvolatile or thermally unstable analytes and was demonstrated to be extremely useful for separation of compounds such as pentaerythritol tetrastearate and a C36 hydrocarbon standard.12... [Pg.91]

Niacin (vitamin B3) has broad applications in the treatment of lipid disorders when used at higher doses than those used as a nutritional supplement. Niacin inhibits fatty acid release from adipose tissue and inhibits fatty acid and triglyceride production in liver cells. This results in an increased intracellular degradation of apolipoprotein B, and in turn, a reduction in the number of VLDL particles secreted (Fig. 9-4). The lower VLDL levels and the lower triglyceride content in these particles leads to an overall reduction in LDL cholesterol as well as a decrease in the number of small, dense LDL particles. Niacin also reduces the uptake of HDL-apolipoprotein A1 particles and increases uptake of cholesterol esters by the liver, thus improving the efficiency of reverse cholesterol transport between HDL particles and vascular tissue (Fig. 9-4). Niacin is indicated for patients with elevated triglycerides, low HDL cholesterol, and elevated LDL cholesterol.3... [Pg.189]

Bailey, KR, Ishida, BY, Duncan, KG, Kane, JP, and Schwartz, DM, 2004. Basal reverse cholesterol transport of retinal pigment epithelium cell digested photoreceptor outer segment lipids. Invest Ophthalmol Vis Sci 45, U721. [Pg.339]


See other pages where Cholesterol reverse is mentioned: [Pg.96]    [Pg.256]    [Pg.52]    [Pg.256]    [Pg.96]    [Pg.256]    [Pg.52]    [Pg.256]    [Pg.95]    [Pg.226]    [Pg.3]    [Pg.835]    [Pg.79]    [Pg.942]    [Pg.1157]    [Pg.1160]    [Pg.1160]    [Pg.210]    [Pg.219]    [Pg.220]    [Pg.224]    [Pg.227]    [Pg.229]    [Pg.698]    [Pg.34]    [Pg.215]    [Pg.178]    [Pg.672]    [Pg.1362]    [Pg.372]    [Pg.320]    [Pg.198]    [Pg.268]   
See also in sourсe #XX -- [ Pg.210 , Pg.211 , Pg.219 , Pg.224 ]

See also in sourсe #XX -- [ Pg.472 ]

See also in sourсe #XX -- [ Pg.85 , Pg.93 ]




SEARCH



High-density lipoprotein reverse cholesterol

Reverse cholesterol transport

Reverse cholesterol transport pathway

© 2024 chempedia.info