Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chromium detection

Chromium can be excreted in hair and fingernails. Mean trace levels of chromium detected in the hair of individuals from the general population of several countries were as follows United States, 0.23 ppm Canada, 0.35 ppm Poland, 0.27 ppm Japan, 0.23 ppm and India, 1.02 ppm (Takagi et al. 1986). Mean levels of chromium in the fingernails of these populations were United States, 0.52 ppm Canada,... [Pg.181]

Analysis of Trace or Minor Components. Minor or trace components may have a significant impact on quaHty of fats and oils (94). Metals, for example, can cataly2e the oxidative degradation of unsaturated oils which results in off-flavors, odors, and polymeri2ation. A large number of techniques such as wet chemical analysis, atomic absorption, atomic emission, and polarography are available for analysis of metals. Heavy metals, iron, copper, nickel, and chromium are elements that have received the most attention. Phosphoms may also be detectable and is a measure of phosphoHpids and phosphoms-containing acids or salts. [Pg.134]

To determine moderate amounts of Cr(III) and Cr(VI) in samples that have both oxidation states present, Cr(VI) is analyzed by direct titration in one sample, and the total chromium is found in a second sample after oxidation of the Cr(III). The Cr(III) concentration is determined as the difference. Trace quantities of Cr(VI) in Cr(III) compounds can be detected and analyzed by (3)-diphenylcarbazide. Trace quantities of Cr(III) in Cr(VI) may be detected and analyzed either photometrically (102) or by ion chromatography using various modes of detection (103). [Pg.141]

Chiral salen chromium and cobalt complexes have been shown by Jacobsen et al. to catalyze an enantioselective cycloaddition reaction of carbonyl compounds with dienes [22]. The cycloaddition reaction of different aldehydes 1 containing aromatic, aliphatic, and conjugated substituents with Danishefsky s diene 2a catalyzed by the chiral salen-chromium(III) complexes 14a,b proceeds in up to 98% yield and with moderate to high ee (Scheme 4.14). It was found that the presence of oven-dried powdered 4 A molecular sieves led to increased yield and enantioselectivity. The lowest ee (62% ee, catalyst 14b) was obtained for hexanal and the highest (93% ee, catalyst 14a) was obtained for cyclohexyl aldehyde. The mechanism of the cycloaddition reaction was investigated in terms of a traditional cycloaddition, or formation of the cycloaddition product via a Mukaiyama aldol-reaction path. In the presence of the chiral salen-chromium(III) catalyst system NMR spectroscopy of the crude reaction mixture of the reaction of benzaldehyde with Danishefsky s diene revealed the exclusive presence of the cycloaddition-pathway product. The Mukaiyama aldol condensation product was prepared independently and subjected to the conditions of the chiral salen-chromium(III)-catalyzed reactions. No detectable cycloaddition product could be observed. These results point towards a [2-i-4]-cydoaddition mechanism. [Pg.162]

Recommended practice for applying statistics to analysis of corrosion data Practice for operating light- and water-exposure apparatus (carbon-arc Type) for exposure of nonmetallic materials Method for detecting susceptibility to intergranular attack in wrought nickel-rich, chromium-bearing alloys... [Pg.1101]

In the many reports on photoelectron spectroscopy, studies on the interface formation between PPVs and metals, focus mainly on the two most commonly used top electrode metals in polymer light emitting device structures, namely aluminum [55-62] and calcium [62-67]. Other metals studied include chromium [55, 68], gold [69], nickel [69], sodium [70, 71], and rubidium [72], For the cases of nickel, gold, and chromium deposited on top of the polymer surfaces, interactions with the polymers are reported [55, 68]. In the case of the interface between PPV on top of metallic chromium, however, no interaction with the polymer was detected [55]. The results concerning the interaction between chromium and PPV indicates two different effects, namely the polymer-on-metal versus the metal-on-polymer interface formation. Next, the PPV interface formation with aluminum and calcium will be discussed in more detail. [Pg.78]

In the oxidation of 2-propanol no polymer could be detected. However, when benzaldehyde was added, polymerization occurred to a considerable extent. These data suggest that the intermediate chromium(rv) or chromium(V) species formed in the oxidation of alcohol was responsible for the radical products and that the benzaldehyde was involved in the initiation. [Pg.528]

This short and far from complete survey shows that the previously obscure field of chemical induction is becoming more and more understood. The accelerating pace of progress has furnished from the forties onwards a great deal of interesting information about the chemistry of unstable intermediates, e.g. chromium(V), chromium(IV), arsenic(IV), tin(III), HO2, OH, SO4 radicals. These results were obtained mostly by conventional methods. Therefore, it may be expected that the more extensive application of methods suitable for detection and estimation of short-living entities (e.g. resonance methods, fast reaction techniques) will enable our somewhat qualitative knowledge (as it is today) to be put onto a quantitative basis. [Pg.577]

Separation and detection methods The common methods used to separate the Cr(III)/(VI) species are solvent extraction, chromatography and coprecipitation. In case of Cr(VI) from welding fumes trapped on a filter, a suitable leaching of the Cr(VI) from the sample matrix is needed, without reducing the Cr(VI) species. The most used detection methods for chromium are graphite furnace AAS, chemiluminescence, electrochemical methods, ICP-MS, thermal ionization isotope dilution mass spectrometry and spectrophotometry (Vercoutere and Cornelis 1995)- The separation of the two species is the most delicate part of the procedure. [Pg.79]

Many toxic pollutants were detected in the process wastewaters from metal molding and casting processes. The toxic pollutants detected most frequently in concentrations at or above 0.1 mg/L were phenolic compounds and heavy metals. The pollutants include 2,4,6-trichlorophenol, 2,4-dimethyl-phenol, phenol, 2-ethylhexyl, cadmium, chromium, copper, lead, nickel, and zinc. Each type of operation in the foundry industry can produce different types of pollutants in the wastewater stream. Also, because each subcategory operation often involves different processes, pollutant concentrations per casting metals may vary. [Pg.163]

Denmark has in 2012 proposed that articles of leather, coming into direct and prolonged contact with the skin, shall not be allowed to be placed on the European market if leather contains chromium (VI) in detectable concentrations as measured by ISO EN 17075 2007, with a detection limit of 3 ppm. [Pg.259]

The more nitrogen the complexes contain, the less stable they are. The last member of the series, chromium hexanitrogen, was not detected, probably because it is too unstable at the temperature of liquid xenon. Other complexes and reactions were also studied, using liquid xenon or liquid krypton as the solvent. A list is given in Table 1. [Pg.149]

Seitz, Suydam, and Hercules 186> recently developed on the basis of luminol chemiluminescence a method for chromium-III ion determination which has a detection limit of about 0.025 ppb. The method is specific for free chromium-III ions as chromium-VI compounds have no catalytic effect and other metal ions can be converted to a non-catalytic form by complexing with EDTA, since the chromium-III complex of EDTA, which is in any case not catalytically active, is formed kinetically slowly 186>. To detect extremely small light emissions, and hence very small metal concentrations, a flow system was used which allows the reactants to be mixed directly in front of a multiplier. (For a detailed description of the apparatus, see 186>). [Pg.131]

A method has been developed for differentiating hexavalent from trivalent chromium [33]. The metal is electrodeposited with mercury on pyrolytic graphite-coated tubular furnaces in the temperature range 1000-3000 °C, using a flow-through assembly. Both the hexa- and trivalent forms are deposited as the metal at pH 4.7 and a potential at -1.8 V against the standard calomel electrode, while at pH 4.7, but at -0.3 V, the hexavalent form is selectively reduced to the trivalent form and accumulated by adsorption. This method was applied to the analysis of chromium species in samples of different salinity, in conjunction with atomic absorption spectrophotometry. The limit of detection was 0.05 xg/l chromium and relative standard deviation from replicate measurements of 0.4 xg chromium (VI) was 13%. Matrix interference was largely overcome in this procedure. [Pg.67]

Cranston and Murray [35,36] took samples in polyethylene bottles that had been pre-cleaned at 20 °C for four days with 1% distilled hydrochloric acid. Total chromium Cr(VI) + Cr(III) + Crp (Crp particulate chromium) was coprecipitated with iron (II) hydroxide, and reduced chromium Cr(III) + Crp was co-precipitated with iron (III) hydroxide. These co-precipitation steps were completed within minutes of the sample collection to minimise storage problems. The iron hydroxide precipitates were filtered through 0.4 pm Nu-cleopore filters and stored in polyethylene vials for later analysis in the laboratory. Particulate chromium was also obtained by filtering unaltered samples through 0.4 pm filters. In the laboratory the iron hydroxide co-precipitates were dissolved in 6 N distilled hydrochloric acid and analysed by flameless atomic absorption. The limit of detection of this method is about 0.1 to 0.2 nM. Precision is about 5%. [Pg.68]

Mullins [37] has described a procedure for determining the concentrations of dissolved chromium species in seawater. Chromium (III) and chromium (VI) separated by co-precipitation with hydrated iron (III) oxide and total chromium are determined separately by conversion to chromium (VI), extraction with ammonium pyrrolidine diethyl dithiocarbamate into methyl isobutyl ketone, and determination by AAS. The detection limit is 40 ng/1 chromium. The dissolved chromium not amenable to separation and direct extraction is calculated by difference. In waters investigated, total concentrations were relatively high (1-5 xg/l), with chromium (VI) the predominant species in all areas sampled with one exception, where organically bound chromium was the major species. [Pg.71]

Dubovenko et al. [180] used chemiluminescence to determine total chromium in brines. The method is based on the enhancement of the chemiluminescence by chromium in the reaction of 4-(diethylamino) phthalhydrazide with hydrogen peroxide. The detection limit is 0.025 pg/1 of chromium, and the chemiluminescence is directly proportional to chromium concentrations in the range 5 x 10 10 to 10 6 M. [Pg.157]

The chemiluminescence technique has been used to determine trivalent chromium in seawater. Chang et al. [187] showed Luminol techniques for determination of chromium (III) were hampered by a salt interference, mainly due to magnesium ions. Elimination of this interference is achieved by seawater dilution and utilising bromide ion chemiluminescence signal enhancement (Fig. 5.7). The chemiluminescence results were comparable with those obtained by a graphite furnace flameless atomic absorption analysis for the total chromium present in samples. The detection limit is 3.3 x 10 9 mol/1 (0.2 ppb) for seawater with a salinity of 35%, with 0.5 M bromide enhancement. [Pg.159]


See other pages where Chromium detection is mentioned: [Pg.159]    [Pg.374]    [Pg.34]    [Pg.378]    [Pg.285]    [Pg.159]    [Pg.374]    [Pg.34]    [Pg.378]    [Pg.285]    [Pg.233]    [Pg.277]    [Pg.332]    [Pg.160]    [Pg.263]    [Pg.216]    [Pg.220]    [Pg.969]    [Pg.160]    [Pg.177]    [Pg.463]    [Pg.1046]    [Pg.1306]    [Pg.1307]    [Pg.1027]    [Pg.1031]    [Pg.1041]    [Pg.397]    [Pg.454]    [Pg.151]    [Pg.81]    [Pg.116]    [Pg.294]    [Pg.10]    [Pg.22]    [Pg.116]    [Pg.791]    [Pg.527]   
See also in sourсe #XX -- [ Pg.104 ]




SEARCH



Nickel-chromium alloys intergranular attack susceptibility detection

© 2024 chempedia.info