Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Extreme detection

The adsorption issue is of particular importance in surface analytical techniques as excessive adsorption during analysis will affect, in one form or another, the signals of interest. Indeed, this will introduce significant background levels to any secondary ions containing the same species. Note It is commonly stated that SIMS does not suffer from a background signal, which is one of the reasons for the extreme detection limits possible with SIMS. [Pg.153]

The case considered above corresponds to R < H. The calculation using formula (1) gives the next results. For example, consider the thickness of dry developer layer h = 20 pm. In the absence of sedimentation process our product family (penetrant and developer indicated above) could not detect the cracks with the depth lo < 1,33 mm of any widths. Nevertheless due to the sedimentation one can get the decrease of developer s thickness from h = 20 pm till h s 5 pm. As a result, our product family can ensure the detection of the cracks with H > 2,3 pm even with very small length lo = 0,4 mm. At the same time if lo = 1 mm, then the cracks with extremely small width H > 0,25 will be revealed. [Pg.615]

Naturally, such a high probability of detection of theoretically 100% never can be realized in practice. The inspector will not recognize all good visible indications at any time because he cannot always be fiilly concentrated on his task, which is called "human factor". This human factor appears in any visual inspection and may be reduced only by a second redundant inspection or extreme signals as a light flash or an acustic signal. [Pg.676]

Two such new and possibly powerful methods are described in this paper. They allow for the detection of 1. extremely small ferromagnetic inclusions in the volume of a non ferromagnetic workpiece and 2. non ferromagnetic segregations in the volume of a non ferromagnetic workpiece. [Pg.988]

The Hamiltonian considered above, which connmites with E, involves the electromagnetic forces between the nuclei and electrons. However, there is another force between particles, the weak interaction force, that is not invariant to inversion. The weak charged current mteraction force is responsible for the beta decay of nuclei, and the related weak neutral current interaction force has an effect in atomic and molecular systems. If we include this force between the nuclei and electrons in the molecular Hamiltonian (as we should because of electroweak unification) then the Hamiltonian will not conuuiite with , and states of opposite parity will be mixed. However, the effect of the weak neutral current interaction force is mcredibly small (and it is a very short range force), although its effect has been detected in extremely precise experiments on atoms (see, for... [Pg.170]

While a laser beam can be used for traditional absorption spectroscopy by measuring / and 7q, the strength of laser spectroscopy lies in more specialized experiments which often do not lend themselves to such measurements. Other techniques are connnonly used to detect the absorption of light from the laser beam. A coimnon one is to observe fluorescence excited by the laser. The total fluorescence produced is nonnally proportional to the amount of light absorbed. It can be used as a measurement of concentration to detect species present in extremely small amounts. Or a measurement of the fluorescence intensity as the laser frequency is scaimed can give an absorption spectrum. This may allow much higher resolution than is easily obtained with a traditional absorption spectrometer. In other experiments the fluorescence may be dispersed and its spectrum detennined with a traditional spectrometer. In suitable cases this could be the emission from a single electronic-vibrational-rotational level of a molecule and the experimenter can study how the spectrum varies with level. [Pg.1123]

Disadvantages. The magic angle must be extremely stable and accurately set. The spiiming speed must show good stability over the duration of the experiment. The probe needs to be accurately tuned and careful correction for irradiation and detection variations with frequency, and baseline effects are necessary. The gain... [Pg.1485]

Detection of cantilever displacement is another important issue in force microscope design. The first AFM instrument used an STM to monitor the movement of the cantilever—an extremely sensitive method. STM detection suffers from the disadvantage, however, that tip or cantilever contamination can affect the instrument s sensitivity, and that the topography of the cantilever may be incorporated into the data. The most coimnon methods in use today are optical, and are based either on the deflection of a laser beam [80], which has been bounced off the rear of the cantilever onto a position-sensitive detector (figme B 1.19.18), or on an interferometric principle [81]. [Pg.1693]

If the molecules could be detected with 100% efficiency, the fluxes quoted above would lead to impressive detected signal levels. The first generation of reactive scattering experiments concentrated on reactions of alkali atoms, since surface ionization on a hot-wire detector is extremely efficient. Such detectors have been superseded by the universal mass spectrometer detector. For electron-bombardment ionization, the rate of fonnation of the molecular ions can be written as... [Pg.2062]

When the reaction is over, add- concentrated hydrochloric acid to decompose the tsocyanide and pour it away after the odour is no longer discernible. The test is extremely dehcate and will often detect traces of primary amines in secondary and tertiary amines it must therefore be used with due regard to this and other factors. [Pg.421]

Chlorine gas is a respiratory irritant and is readily detectable at concentrations of <1 ppm in air because of its penetrating odor. Chlorine gas, after several hours of exposure, causes mild irritation of the eyes and of the mucous membrane of the respiratory tract. At high concentrations and in extreme situations, increased difficulty in breathing can result in death through suffocation. The physiological response to various levels of chlorine gas is given in Table 19. [Pg.510]

Discriminant Sensory Analysis. Discriminant sensory analysis, ie, difference testing, is used to determine if a difference can be detected in the flavor of two or more samples by a panel of subjects. These differences may be quantitative, ie, a magnitude can be assigned to the differences but the nature of the difference is not revealed. These procedures yield much less information about the flavor of a food than descriptive analyses, yet are extremely useful eg, a manufacturer might want to substitute one component of a food product with another safer or less expensive one without changing the flavor in any way. Several formulations can be attempted until one is found with flavor characteristics that caimot be discriminated from the original or standard sample. [Pg.3]

Whatever the physiology of odor perception may be, the sense of smell is keener than that of taste (22). If flavors are classed into odors and tastes as is common practice in science, it can be calculated that there are probably more than 10 possible sensations of odor and only a few, perhaps five, sensations of taste (13,21,35—37). Just as a hereditary or genetic factor may cause taste variations between individuals toward phenylthiourea, a similar factor may be in operation with odor. The odor of the steroid androsterone, found in many foods and human sweat, may eflcit different responses from different individuals. Some are very sensitive to it and find it unpleasant. To others, who are less sensitive to it, it has a musk or sandalwood-like smell. Approximately 50% of the adults tested cannot detect any odor even at extremely high concentrations. It is befleved that this abiUty is genetically determined (38). [Pg.11]

In the spring of 1989, it was announced that electrochemists at the University of Utah had produced a sustained nuclear fusion reaction at room temperature, using simple equipment available in any high school laboratory. The process, referred to as cold fusion, consists of loading deuterium into pieces of palladium metal by electrolysis of heavy water, E)20, thereby developing a sufficiently large density of deuterium nuclei in the metal lattice to cause fusion between these nuclei to occur. These results have proven extremely difficult to confirm (20,21). Neutrons usually have not been detected in cold fusion experiments, so that the D-D fusion reaction familiar to nuclear physicists does not seem to be the explanation for the experimental results, which typically involve the release of heat and sometimes gamma rays. [Pg.156]

Ana.lytica.1 Methods. Since 1984, dramatic technical advances have been made in the analysis of trace organic chemicals in the environment. Indeed, these advances have been largely responsible for the increased pubUc and governmental awareness of the wide distribution of herbicides in the environment. The abiUty to detect herbicides at ppb and ppt levels has resulted in the discovery of trace herbicide residues in many unexpected and unwanted areas. The realization that herbicides are being transported throughout the environment, albeit at extremely low levels, has caused much pubUc and governmental concern. However, the pubUc health implications remain unclear. [Pg.49]

The demonstration unit was later transported to the CECOS faciHty at Niagara Falls, New York. In tests performed in 1985, approximately 3400 L of a mixed waste containing 2-chlorophenol [95-57-8] nitrobenzene [98-95-3] and 1,1,2-trichloroethane [79-00-5] were processed over 145 operating hours 2-propanol was used as a supplemental fuel the temperature was maintained at 615 to 635°C. Another 95-h test was conducted on a PCB containing transformer waste. Very high destmction efficiencies were achieved for all compounds studied (17). A later bench-scale study, conducted at Smith Kline and French Laboratories in conjunction with Modar (18), showed that simulated chemical and biological wastes, a fermentation broth, and extreme thermophilic bacteria were all completely destroyed within detection limits. [Pg.499]

Nickel Carbonyl The extremely toxic gas nickel carbonyl can be detected at 0.01 ppb by measuring its chemiluminescent reaction with ozone in the presence of carbon monoxide. The reaction produces excited nickel(II) oxide by a chain process which generates many photons from each pollutant molecule to permit high sensitivity (315). [Pg.276]


See other pages where Extreme detection is mentioned: [Pg.4564]    [Pg.101]    [Pg.204]    [Pg.109]    [Pg.219]    [Pg.4564]    [Pg.101]    [Pg.204]    [Pg.109]    [Pg.219]    [Pg.990]    [Pg.1249]    [Pg.1535]    [Pg.1812]    [Pg.1824]    [Pg.2077]    [Pg.2483]    [Pg.2826]    [Pg.489]    [Pg.1057]    [Pg.1166]    [Pg.260]    [Pg.268]    [Pg.134]    [Pg.383]    [Pg.45]    [Pg.286]    [Pg.404]    [Pg.2]    [Pg.5]    [Pg.55]    [Pg.200]    [Pg.431]    [Pg.511]    [Pg.16]    [Pg.214]    [Pg.215]    [Pg.44]   


SEARCH



Extreme

Extremities

Extremizer

SPFS Detection of Extremely Diluted Antigen Densities

© 2024 chempedia.info