Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cholinesterases butyrylcholinesterase

Although this study (Hart 1980) did not identify an effect level, the NOAEL is below the LOEL found in all studies examining the toxicity of diisopropyl methylphosphonate. The LOEL for diisopropyl methylphosphonate is 262 mg/kg/day for male mink and 330 mg/kg/day for female mink (Bucci et al. 1997), doses at which statistically significant decreases in plasma cholinesterase (butyrylcholinesterase) but not RBC cholinesterase (acetylcholinesterase) activity were observed (Bucci et al. 1997). In general, a decrease in plasma cholinesterase activity is considered to be a marker of exposure rather than a marker of adverse effect, while a decrease in RBC acetylcholinesterase activity is a neurological effect thought to parallel the inhibition of brain acetylcholinesterase activity and is thus considered an adverse effect. Diisopropyl methylphosphonate was not found to inhibit red blood cell cholinesterase at doses at which plasma cholinesterase was significantly inhibited. No effects were observed in males at 45 mg/kg/day (Bucci et al. 1997) or at 63 mg/kg/day (Bucci et al. 1994), and no effects were observed in females at 82 mg/kg/day (Bucci et al. 1994), or at 57 mg/kg/day (Bucci et al. 1997). [Pg.81]

Inhibition of the two principal human cholinesterases, acetylcholinesterase and pseudocholinesterase, may not always result in visible neurological effects (Sundlof et al. 1984). Acetylcholinesterase, also referred to as true cholinesterase, red blood cell cholinesterase, or erythrocyte cholinesterase is found in erythrocytes, lymphocytes, and at nerve synapses (Goldfrank et al. 1990). Inhibition of erythrocyte or lymphocyte acetylcholinesterase is theoretically a reflection of the degree of synaptic cholinesterase inhibition in nervous tissue, and therefore a more accurate indicator than pseudocholinesterase activity of inhibited nervous tissue acetylcholinesterase (Fitzgerald and Costa 1993 Sundlof et al. 1984). Pseudocholinesterase (also referred to as cholinesterase, butyrylcholinesterase, serum cholinesterase, or plasma cholinesterase) is found in the plasma, serum, pancreas, brain, and liver and is an indicator of exposure to a cholinesterase inhibitor. [Pg.33]

Released ACh is rapidly hydrolyzed and inactivated by a specific acetylcholinesterase, localized to pre- and postjunctional membranes (basal lamina of motor end plates), or by a less specific serum cholinesterase (butyrylcholinesterase), a soluble enzyme present in serum and interstitial fluid. [Pg.104]

The synthesis, toxicity, neuroprotection, and human acetyl-cholinesterase/butyrylcholinesterase inhibition properties of ft-naphthotacrinesl-14 have been reported [176]. p-Naphthotacrines 1-14 showed lower toxicity than tacrine. [Pg.397]

Tacrine (initially 10 mg p.o. q.i.d.) is indicated in the treatment of mild to moderate dementia of the Alzheimer s type. Although many neuronal systems are affected in Alzheimer s disease, the decline in central cholinergic activity is one of the most pronounced neurotransmitter deficits. Tacrine s primary effect is the reversible inhibition of cholinesterase—butyrylcholinesterase more than acetylcholinesterase. This inhibition increases the level of acetylcholine in the central nervous system. In fact, increased levels of acetylcholine have been detected in the cerebrospinal fluid of patients receiving tacrine (see also Figure 12). [Pg.667]

Pharmacokinetics Succinylcholine is composed of two acetylcholine molecules linked end to end. Succinylcholine is metabolized by plasma cholinesterase (butyrylcholinesterase or pseudocholinesterase), which determines the amount of drug reaching the end plate. It has a duration of action of only a few minutes if given as a single dose. Blockade may be prolonged in patients with genetic variants of plasma cholinesterase that metabolize succinylcholine very slowly. Succinylcholine is not rapidly hydrolyzed by acetylcholinesterase. [Pg.246]

There is a second type of cholinesterase called butyrylcholinesterase, pseudocholinesterase, or cholinesterase. This enzyme is present in some nonneural cells in the central and peripheral nervous systems as well as in plasma and serum, the liver, and other organs. Its physiologic function is not known, but is hypothesized to be the hydrolysis of esters ingested from plants (Lefkowitz et al. 1996). Plasma cholinesterases are also inhibited by organophosphate compounds through irreversible binding this binding can act as a detoxification mechanism as it affords some protection to acetylcholinesterase in the nervous system (Parkinson 1996 Taylor 1996). [Pg.102]

Cholinesterases are another group of B-esterases. The two main types are acetylcholinesterase (EC 3.1.1.7) and unspecific or butyrylcholinesterase (EC 3.1.1.8). Acetylcholinesterase (AChE) is found in the postsynaptic membrane of cholinergic... [Pg.38]

Released ACh is broken down by membrane-bound acetylcholinesterase, often called the true or specific cholinesterase to distinguish it from butyrylcholinesterase, a pseudo-or non-specific plasma cholinesterase. It is an extremely efficient enzyme with one molecule capable of dealing with something like 10000 molecules of ACh each second, which means a short life and rapid turnover (100 ps) for each molecule of ACh. It seems that about 50% of the choline freed by the hydrolysis of ACh is taken back into the nerve. There is a wide range of anticholinesterases which can be used to prolong and potentiate the action of ACh. Some of these, such as physostigmine, which can cross the blood-brain barrier to produce central effects and neostigmine, which does not readily... [Pg.121]

Consistent decreases in plasma cholinesterase may not have been observed in rats and dogs because they were treated with lower doses of diisopropyl methylphosphonate. In general, depression of plasma cholinesterase, also known as pseudocholinesterase or butyrylcholinesterase, is considered a marker of exposure rather than an adverse effect. Depression of cholinesterase activity in red blood cells (acetylcholinesterase) is a neurological effect thought to parallel the inhibition of brain acetylcholinesterase activity. It is considered an adverse effect. Acetylcholinesterase is found mainly in nervous tissue and erythrocytes. Diisopropyl methylphosphonate was not found to inhibit RBC... [Pg.57]

The inhibition of two cholinesterase activities in blood can also be used to confirm exposure to certain organophosphate ester compounds. Red blood cell acetylcholinesterase is the same cholinesterase found in the gray matter of the central nervous system and motor endplates of sympathetic ganglia. Synonyms for this enzyme include specific cholinesterase, true cholinesterase, and E-type cholinesterase. Plasma cholinesterase is a distinct enzyme found in intestinal mucosa, liver, plasma, and white matter of the central nervous system. Synonyms for this enzyme include nonspecific cholinesterase, pseudocholinesterase, butyrylcholinesterase, and S-type cholinesterase (Evans 1986). Nonspecific cholinesterase is thought to be a very poor indicator of neurotoxic effects. [Pg.224]

Presently available methods to diagnose and biomonitor exposure to anticholinesterases, e.g., nerve agents, rely mostly on measurement of residual enzyme activity of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in blood. More specific methods involve analysis of the intact poison or its degradation products in blood and/or urine. These approaches have serious drawbacks. Measurement of cholinesterase inhibition in blood does not identify the anticholinesterase and does not provide reliable evidence for exposure at inhibition levels less than 20 %. The intact poison and its degradation products can only be measured shortly after exposure. Moreover, the degradation products of pesticides may enter the body as such upon ingestion of food products containing these products. [Pg.22]

Most insecticides, especially the organophosphate group, cause neurotoxicity as their major mode of action. Assessment of the neurotoxicity includes neurochemical endpoints such as cholinesterase (including acetylcholinesterase, which is the major neurotransmitter in vertebrates such as fish, and other enzymes such as butyrylcholinesterase) inhibition and behavioral endpoints such as swimming speed [79]. Studies done in rats show the neurotoxic action of insecticides such as dimethoate, methyl parathion, dichlorvos, ethyl parathion or propoxur after a prolonged exposure [80,81]. [Pg.68]

Esterases that contribute to human drug metabolism fall into three major classes the cholinesterases (acetylcholinesterase, pseudocholinesterase, butyrylcholinesterase, etc.),... [Pg.121]

Cholinesterase Acylcholine acylhydrolase, butyrylcholinesterase, pseudocholinesterase Choline esters and other esters... [Pg.44]

In contrast to acetylcholinesterase, cholinesterase (acylcholine acyl-hydrolase, butyrylcholinesterase, EC 3.1.1.8) exhibits relatively unspecific esterase activity toward choline esters, with abroad specificity relative to the size of the acyl group. The enzyme is synthesized in the liver and can be found in smooth muscle, adipocytes, and plasma. Its physiological role remains partly obscure, but there is evidence that it is present transiently in the embryonic nervous system, where it is replaced in later stages of development by acetylcholinesterase. It has, therefore, been suggested that cholinesterase functions as an embryonic acetylcholinesterase. [Pg.54]

Thioesters play a paramount biochemical role in the metabolism of fatty acids and lipids. Indeed, fatty acyl-coenzyme A thioesters are pivotal in fatty acid anabolism and catabolism, in protein acylation, and in the synthesis of triacylglycerols, phospholipids and cholesterol esters [145], It is in these reactions that the peculiar reactivity of thioesters is of such significance. Many hydrolases, and mainly mitochondrial thiolester hydrolases (EC 3.1.2), are able to cleave thioesters. In addition, cholinesterases and carboxylesterases show some activity, but this is not a constant property of these enzymes since, for example, carboxylesterases from human monocytes were found to be inactive toward some endogenous thioesters [35] [146], In contrast, allococaine benzoyl thioester was found to be a good substrate of pig liver esterase, human and mouse butyrylcholinesterase, and mouse acetylcholinesterase [147],... [Pg.416]

The fruit of a number of solanaceous plants, including tomato Lycopersicon esculentum), potato Solanum tuberosum) and eggplant Solarium melongena esculentum), have cholinesterase-inhibiting effects (Krasowski et al. 1997). They contain solanaceous glycoalkaloids o-solanine and o-chaconine, which are triglycosides of solanidine, a steroidal alkaloid derived from cholesterol. They are the only plant chemicals known to inhibit both acetlycholinesterase and butyrylcholinesterase, both in vitro and in vivo. [Pg.204]

It is well established that acetylcholine can be catabolized by both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) these are also known as "true" and "pseudo" cholinesterase, respectively. Such enzymes may be differentiated by their specificity for different choline esters and by their susceptibility to different antagonists. They also differ in their anatomical distribution, with AChE being associated with nervous tissue while BChE is largely found in non-nervous tissue. In the brain there does not seem to be a good correlation between the distribution of cholinergic terminals and the presence of AChE, choline acetyltransferase having been found to be a better marker of such terminals. An assessment of cholinesterase activity can be made by examining red blood cells, which contain only AChE, and plasma. [Pg.62]

The cholinesterases, acetylcholinesterase and butyrylcholinesterase, are serine hydrolase enzymes. The biological role of acetylcholinesterase (AChE, EC 3.1.1.7) is to hydrolyze the neurotransmitter acetylcholine (ACh) to acetate and choline (Scheme 6.1). This plays a role in impulse termination of transmissions at cholinergic synapses within the nervous system (Fig. 6.7) [12,13]. Butyrylcholinesterase (BChE, EC 3.1.1.8), on the other hand, has yet not been ascribed a function. It tolerates a large variety of esters and is more active with butyryl and propio-nyl choline than with acetyl choline [14]. Structure-activity relationship studies have shown that different steric restrictions in the acyl pockets of AChE and BChE cause the difference in their specificity with respect to the acyl moiety of the substrate [15]. AChE hydrolyzes ACh at a very high rate. The maximal rate for hydrolysis of ACh and its thio analog acetyl-thiocholine are around 10 M s , approaching the diffusion-controlled limit [16]. [Pg.176]

The body contains two main classes of cholinesterase acetylcholinesterase (EC 3.1.1.7) and butyrylcholinesterase (EC 3.1.1.8).27 The former, sometimes referred to as true cholinesterase, Is mainly a tissue enzyme and Is found mainly In such tissues as the synapses of the cholinergic system It Is also found In other tissues, such as erythrocytes, where Its function Is uncertain. The latter, referred to as pseudocholinesterase, Is a soluble enzyme that is synthesized In the liver and circulates in the plasma-... [Pg.343]

Another cholinesterase, called serum cholinesterase or butyrylcholinesterase, is found in serum and the liver. It plays an important role in drug metabolism. [Pg.487]

Some cholinesterase inhibitors also inhibit butyrylcholinesterase (pseudocholinesterase). Flowever, inhibition of butyrylcholinesterase plays little role in the action of indirect-acting cholinomimetic drugs because this enzyme is not important in the physiologic termination of synaptic acetylcholine action. Some quaternary cholinesterase inhibitors also have a modest direct action as well, eg, neostigmine, which activates neuromuscular nicotinic cholinoceptors directly in addition to blocking cholinesterase. [Pg.130]

The extremely short duration of action of succinylcholine (5-10 minutes) is due to its rapid hydrolysis by butyrylcholinesterase and pseudocholinesterase in the liver and plasma, respectively. Plasma cholinesterase metabolism is the predominant pathway for succinylcholine elimination. Since succinylcholine is more rapidly metabolized than mivacurium, its duration of action is shorter than that of mivacurium (Table 27-1). The primary metabolite of succinylcholine, succinylmonocholine, is rapidly broken down to succinic acid and choline. Because plasma cholinesterase has an enormous capacity to hydrolyze succinylcholine, only a small percentage of the original intravenous dose ever reaches the neuromuscular junction. In addition, as there is little if any plasma cholinesterase at the motor end plate, a succinylcholine-induced blockade is terminated by its diffusion away from the end plate into extracellular fluid. Therefore, the circulating levels of plasma cholinesterase influence the duration of action of succinylcholine by determining the amount of the drug that reaches the motor end plate. [Pg.582]

FIGURE 12—24. Icon for the cholinesterase inhibitor donepezil. This is the current first-line treatment for Alzheimer s disease, since it is a once daily agent without significant hepatotoxicity. It is a reversible agent, selective for acetylcholinesterase (AChE) over butyrylcholinesterase (BuChE), developed by American and Japanese companies. [Pg.481]

FIGURE 12-25. Icon for the cholinesterase inhibitor tacrine. This was the first cholinesterase inhibitor, but since it is a hepatoxotin, it has been relegated to second-line use. Also, it must be given four times daily, is difficult to dose, and has several drug interactions. It is short-acting, reversible, and nonselective, inhibiting both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). [Pg.481]

Which of the following cholinesterase inhibitors is selective for acetylcholinesterase over butyrylcholinesterase ... [Pg.635]

After release from the presynaptic terminal, acetylcholine molecules may bind to and activate an acetylcholine receptor (cholinoceptor). Eventually (and usually very rapidly), all of the acetylcholine released will diffuse within range of an acetylcholinesterase (AChE) molecule. AChE very efficiently splits acetylcholine into choline and acetate, neither of which has significant transmitter effect, and thereby terminates the action of the transmitter (Figure 6-3). Most cholinergic synapses are richly supplied with acetylcholinesterase the half-life of acetylcholine in the synapse is therefore very short. Acetylcholinesterase is also found in other tissues, eg, red blood cells. (Another cholinesterase with a lower specificity for acetylcholine, butyrylcholinesterase [pseudocholinesterase], is found in blood plasma, liver, glia, and many other tissues.)... [Pg.109]

In Berlin in 1948, there were still incidences of malnutrition. Because of this, there were patients who suffered fatal poisoning from the generally safe, local anaestetic drug procaine. This became my impetus to study the esterase that hydrolysed procaine (9). When invited to Philadelphia, I continued these studies with the superior equipment there available to me. I found that the procaine-splitting esterase was butyrylcholinesterase, then called pseudo- or plasma-cholinesterase, and I explored a method using UV-spectrophotometry which elegantly and precisely indicated the esterase activity (10). [Pg.4]

A. Fidder, D. Noort, A.G. Hulst, R. De Ruiter, M.J. Van der Schans, H.P. Benschop and J.P. Langenberg, Retrospective detection of exposure to organophosphorus anti-cholinesterases mass spectrometric analysis of phosphylated human butyrylcholinesterase, Chem. Res. Toxicol., 15, 582-590 (2002). [Pg.450]


See other pages where Cholinesterases butyrylcholinesterase is mentioned: [Pg.75]    [Pg.562]    [Pg.75]    [Pg.562]    [Pg.98]    [Pg.91]    [Pg.192]    [Pg.225]    [Pg.150]    [Pg.204]    [Pg.128]    [Pg.114]    [Pg.1259]    [Pg.467]    [Pg.485]    [Pg.1412]    [Pg.1436]    [Pg.276]    [Pg.642]   
See also in sourсe #XX -- [ Pg.38 ]




SEARCH



Butyrylcholinesterase

Cholinesterase

© 2024 chempedia.info