Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chloro acetic acid chloride

Acetic acid dodine, fentin, glyodin, phenyl mercury acetate, see acetyl chloride chloro acetic acid... [Pg.1024]

Acetic acid chloride. See Acetyl chloride Acetic acid, (4-chloro-2-oxobenzothiazol-3-yl). See Benazolin... [Pg.34]

Another important derivative of m-cresol used in the manufacture of plant protection agents is m-phenoxytoluene, which can be produced from m-cresol and chloro- or bromobenzene at temperatures of 200 °C, with copper catalysts. m-Phenoxytoluene is converted into m-phenoxybenzoic acid methyl ester by oxidation with a cobalt acetate/KBr catalyst and subsequent esterification m-phenoxybenzoic add methyl ester serves as an intermediate in the production of m-phenoxybenzaldehyde, which is used as the raw material in the production of the synthetic pyrethroid insecticide, fenvalerate (see Chapter 6.3.2). The cyanohydrin is formed in-situ, then made to react with 2-isopropyl-(4-chlorophenyl) acetic acid chloride to yield fenvalerate, which was developed by Sumitomo Chemical in 1972. Pyrethroid insecticides are distinguished by their low toxicity and high activity. [Pg.169]

Kollig, 1993 Milano etal., 1988). fran5-l,3-Dichloropropylene was reported to hydrolyze to 3-chloro-2-propen-l-ol and can be biologically oxidized to 3-chloropropenoic acid which is further oxidized to formylacetic acid. Decarboxylation of this compound yields carbon dioxide (Coimors et al., 1990). Chloroacetaldehyde, formyl chloride and chloro-acetic acid were formed from the ozonation of dichloropropylene at approximately 23°C and 730 mmHg. Chloroacetaldehyde and formyl chloride also formed from the reaction of dichloropropylene and hydroxyl radicals (Tuazon et al., 1984). [Pg.471]

Chloro-8-hydroxyquinoline, C-70075 8-Chloro-2( 1 //)-quinolinone, C-60131 8-Chloro-4( 1 //)-quinoIinone, C-60132 17/-Indole-3-acetic acid Chloride, in 1-70013... [Pg.613]

Cinnolin-4(lF/)-one and its 6-chloro, 6-bromo, 6-nitro and 8-nitro derivatives react with sulfuryl chloride or bromine in acetic acid to give the corresponding 3-halo derivatives in about 20% yields. lodination of 8-hydroxycinnolin-4(lF/)-one with a mixture of potassium iodide and potassium iodate gives the 5,7-diiodo derivative the 6,8-diiodo derivative is formed from 5-hydroxycinnolin-4(lF/)-one. [Pg.21]

The catalyst is previously prepared in an apparatus for catalytic hydrogenation, in which are placed 0.5 g. of palladous chloride, 3.0 g. of Norite, and 20 ml. of distilled water. The bottle is swept out with hydrogen and then shaken with hydrogen for 2-3 hours at 2-3 atmospheres (40 lb.) pressure. The palladium on carbon is collected on a Biichner funnel, washed with five 50-ml. portions of distilled water, then with five 50-ml. portions of 95% ethanol, and finally twice with ether. Upon drying, about 3 g. of the catalyst is obtained. It is stored in a vacuum desiccator over solid sodium hydroxide. If the reduction of the chloro-lepidine does not proceed normally, the used catalyst should be removed by suction filtration and a fresh 3-g. portion of catalyst added. Failure of the reduction step is usually due to an inactive catalyst or to impurities in the acetic acid or chlorolepidine. The palladium catalysts, prepared as described elsewhere in this volume, are presumably also satisfactory for the reduction of 2-chlorolepidine (p. 77). [Pg.46]

In 1972, van Leusen, Hoogenboom and Siderius introduced the utility of TosMIC for the synthesis of azoles (pyrroles, oxazoles, imidazoles, thiazoles, etc.) by delivering a C-N-C fragment to polarized double bonds. In addition to the synthesis of 5-phenyloxazole, they also described reaction of TosMIC with /7-nitro- and /7-chloro-benzaldehyde (3) to provide analogous oxazoles 4 in 91% and 57% yield, respectively. Reaction of TosMIC with acid chlorides, anhydrides, or esters leads to oxazoles in which the tosyl group is retained. For example, reaction of acetic anhydride and TosMIC furnish oxazole 5 in 73% yield. ... [Pg.254]

Besides acetophenone, this reaction was also applied to p-chloro- andp-methoxyacetophenone, and even to an aliphatic ketone, acetone (although the yield was stated to be only half as large as that obtained from mesityl oxide, i.e., less than 30%, Dorofeenko and co-workers reported a 45% yield of 2,4,6-trimethylpyrylium perchlorate from acetone, acetic anhydride, and perchloric acid), and is the standard method for preparing pyrylium salts with identical substituents in positions 2 and 4. The acylating agent may be an anhydride in the presence of anhydrous or hydrated ferric chloride, or of boron fluoride, or the acid chloride with ferric chloride.Schneider and co-workers ... [Pg.309]

A related agent, g1 icetanile sodium (42), is made b / a variant of this process. Methyl phenyl acetate is reacted with chlorosulfonic acid to give 38, which itself readily reacts with aminopyrimidine derivative 39 to give sulfonamide Saponification to acid 4 is followed by conversion to the acid chloride and amide formation with 5-chloro-2-methoxyaniline to complete the synthesis of the hypoglycemic agent glicetanile (42). ... [Pg.62]

The acetic acid mother liquor, containing the rest of the reaction product, was concentrated in vacuo. The residue was dissolved in methylene chloride and washed with ice cold sodium carbonate solution. The organic solution was dried, concentrated in vacuo to a small volume and diluted with ether and petroleum ether. Fine yellow needles of 2-chloro-methyl-4-phenyl-6-chloroquinazoline 3-oxide precipitated. The pure base was recrystallized from a mixture of methylene chloride, ether and petroleum ether, MP 133° to 134°C. [Pg.305]

A mixture of 31 5 g (0.1 mol) of 2-chloro-9-(3 -dimethylaminopropylidene)-thiaxanthene (MP 97°C) and 100 g of N-( 3-hydroxyethyl)-piperazine is heated to 130°C and boiled under reflux at this temperature for 48 hours. After cooling, the excess of N-( 3-hydroxyethyl)-piperazine Is evaporated in vacuo, and the residue is dissolved in ether. The ether phase is washed with water and extracted with dilute acetic acid, and 2-chloro-9-[3 -N-(N - -hydroxy-ethyD-piperazinylpropylidene] -thiaxanthene separated from the aqueous acetic acid solution by addition of dilute sodium hydroxide solution to basic reaction. The free base is extracted with ether, the ether phase dried over potassium carbonate, the ether evaporated and the residue dissolved in absolute ethanol. By complete neutralization of the ethanolic solution with a solution of dry hydrogen chloride in absolute ethanol, the dihydrochloride of 2-chloro-9-[3 -N-(N -(3-hydroxyethyl)-piperazinylpropylidene] -thiaxanthene is produced and crystallizes out as a white substance melting at about 250°C to 260°C with decomposition. The yield is 32 g. [Pg.374]

A solution of 60 g of chromic anhydride in 40 ml of water was added dropwise to a suspension of 60 g of 2-aminomethyl-1 -methyl-5-chloro-3-(o-fluorophenyl)-indole hydrochloride in 600 ml of acetic acid. The mixture was stirred at room temperature overnight. To the reaction mixture was added 1.1 liters of ether and 1 liter of water and then 800 ml of 28% ammonium hydroxide, in small portions. The ethereal layer separated, washed with water, dried, and concentrated under reduced pressure. The residue (51.8 g) was dissolved in 100 ml of ethanol, and 100 ml of 20% ethanollc hydrogen chloride was added to the solution and the mixture was cooled. The precipitate was collected by filtration to yield 46.5 g of 1 -methyl-7-chloro-5-(o-fluorophenyl)-1,3-dihydro-2H-1,4-benzodiazepine-2-one hydrochloride, melt-... [Pg.657]

One mol of 2,6-xylidine is dissolved in 800 ml glacial acetic acid. The mixture is cooled to 10°C, after which 1.1 mol chloracetyl chloride is added at one time. The mixture is stirred vigorously during a few moments after which 1,000 ml half-saturated sodium acetate solution, or other buffering or alkalizing substance, is added at one time. The reaction mixture is shaken during half an hour. The precipitate formed which consists of cj-chloro-2,6-di-methyl-acetanilide is filtered off, washed with water and dried. The product is sufficiently pure for further treatment. The yield amounts to 70 to 80% of the theoretical amount. [Pg.875]

Bicyclo[2.2.1]hepta-2,5-diene, nitrosyl chloride adduct, 46, 74 reaction with acetic acid to yield nortricyclyl acetate, 46, 74 Bicyclohexyl, 46, 61 Bicyclohexylidene, 47, 34 ejSO-e s-BlCYCLO[3.3.0]OCTANE-2-CAR-BOXYLIC ACID, 47, 10 Bicyclopentadienylidene, octa-chloro-, 46,93... [Pg.122]

Benzofurazan (benz-1,2,5-oxadiazole) reacted with bromine by addition to give a4,5,6,7-tetrabromo adduct. Bromine in hydrobromic acid solution 4-brominated both 5-methyl- and 5-bromo-benzofurazans (74JHC8I3). When 4,7-dinitrobenzofurazan was treated with ammonium chloride in refluxing acetic acid, nucleophilic displacement gave rise to the 4-chloro-7-nitro derivative (83URP1004375). Naphtho[l, 2-c]furazans (42) are mainly 4-halogenated, but there is minor substitution in the 8-position (73CHE1331). [Pg.277]

Fluorination. Attention has been focused on the direct fluorination of isoquinolines activated by conversion into 2-methylisocarbostyril (80). With gaseous fluorine (diluted to 10% with argon) in acetic acid a 54% yield of the 4-fluoro derivative was obtained. (Scheme 40). With methylene chloride as the solvent, only the 4-chloro analogue was formed [82H( 17)429]. Fluoroisoquinolines have also been made by displacement of nitro groups, and from diazonium fluoroborates (87JHC181). Hepta-chloroisoquinoline was converted into a perfluoro derivative by heating it in an autoclave with anhydrous potassium fluoride [66JCS(C)2328]. [Pg.298]

Acetic acid, vinyl- [3-Butenoic acid], 49 Acetone, ammo-, semicarbazone, hydrochloride [Hydrazinecarboxamide, 2-[l-(ammomethyl)ethyhdene], hydro chloride], correction note, 127 Acetone, chloro- [2 Propanone, 1-chloro ],... [Pg.137]

Satchell476 also measured the first-order rate coefficients for dedeuteration of [4-3H]-anisole by acetic acid or acetic acid-hydrochloric acid media containing zinc and stannic chlorides (Table 128). The rates here paralleled the indicator ratio of 4-nitrodiphenylamine and 4-chloro-2-nitroaniline, so that the implication is that a linear relationship exists between log k and the unknown H0 values. The results also show the rate-enhancing effect of these Friedel-Crafts catalysts, presumably through additional polarisation of the catalysing acid, for in the absence of them, exchange between acetic acid and anisole would be very slow. Other studies relating to the effect of these catalysts are reported below (p. 238). [Pg.207]

We have previously discussed the possibilities of racemization or inversion of the product RS of a solvolysis reaction. However, the formation of an ion pair followed by internal return can also affect the stereochemistry of the substrate molecule RX. Cases have been found where internal return racemizes an original optically active RX, an example being solvolysis in aqueous acetone of a-p-anisylethyl p-nitrobenzoate, while in other cases partial or complete retention is found, for example, solvolysis in aqueous acetone of p-chloro benzhydryl p-nitrobenzoate. the pathway RX R+X some cases where internal return involves racemization, it has been shown that such racemization is faster than solvolysis. For example, optically active p-chlorobenzhydryl chloride racemizes 30 times faster than it solvolyzes in acetic acid. ... [Pg.399]


See other pages where Chloro acetic acid chloride is mentioned: [Pg.675]    [Pg.161]    [Pg.575]    [Pg.161]    [Pg.234]    [Pg.708]    [Pg.157]    [Pg.192]    [Pg.88]    [Pg.114]    [Pg.82]    [Pg.70]    [Pg.116]    [Pg.285]    [Pg.122]    [Pg.144]    [Pg.330]    [Pg.379]    [Pg.811]    [Pg.1470]    [Pg.171]    [Pg.270]    [Pg.287]    [Pg.295]    [Pg.302]    [Pg.11]    [Pg.98]    [Pg.109]   
See also in sourсe #XX -- [ Pg.231 ]




SEARCH



Acetic chloro

Chloro-acetic acid

© 2024 chempedia.info