Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

SUBJECTS chlorine

As chlorination proceeds from methyl chloride to carbon tetrachloride, the length of the C—Cl bond is decreased from 0.1786 nm in the former to 0.1755 nm in the latter (3). At ca 400°C, thermal decomposition of carbon tetrachloride occurs very slowly, whereas at 900—1300°C dissociation is extensive, forming perchloroethylene and hexachloroethane and Hberating some chlorine. Subjecting the vapor to an electric arc also forms perchloroethylene and hexachloroethane, as well as hexachlorobenzene, elementary carbon, and chlorine. [Pg.530]

For chlorine, subject to the solubility limit of Ncl/N0 = 0.12, there is an input flow term in Eq. (37). Therefore, the rate expression for the consumption of chlorine can be written as... [Pg.719]

The redox chlorins at the core of the various reaction centers form an obvious chain with separations of less than 6 A that ensure rates of 10 ps or less. The effect of this chain is to apparently make the photoinduced oxidant and reductant capable of residing briefly on any of the chlorins, subject principally to the free energy of that state and the energetic penalty of any uphill reverse electron transfer. When the free energy... [Pg.86]

Can the byproduct be subjected to further reaction and its value upgraded For example, most organic chlorination reactions produce hydrogen chloride as a byproduct. If this cannot be sold, it... [Pg.124]

Dichlorine h ptoxide, CljO, is the most stable of the chlorine oxides. It is a yellow oil at room temperature, b.p. 353 K, which will explode on heating or when subjected to shock. It is the anhydride of chloric(VlI) acid (perchloric acid) from which it is prepared by dehydration using phosphorus(V) oxide, the acid being slowly reformed when water is added. [Pg.336]

In a search for fluorocarbons having anesthetic properties 1 2 dichloro 1 1 difluoropropane was subjected to photochemical chlorination Two isomeric products were obtained one of which was identified as 1 2 3 tnchloro 1 1 difluoropropane What is the structure of the second com pound" ... [Pg.185]

The direct reaction of other alkyl chlorides, such as butyl chloride, results in unacceptably low overall product yields along with the by-product butene resulting from dehydrochlorination. AH alkyl haHdes having a hydrogen atom in a P- position to the chlorine atom are subject to this complication. [Pg.547]

Tetravalent lead is obtained when the metal is subjected to strong oxidizing action, such as in the electrolytic oxidation of lead anodes to lead dioxide, Pb02 when bivalent lead compounds are subjected to powerful oxidizing conditions, as in the calcination of lead monoxide to lead tetroxide, Pb O or by wet oxidation of bivalent lead ions to lead dioxide by chlorine water. The inorganic compounds of tetravalent lead are relatively unstable eg, in the presence of water they hydrolyze to give lead dioxide. [Pg.67]

Examples include luminescence from anthracene crystals subjected to alternating electric current (159), luminescence from electron recombination with the carbazole free radical produced by photolysis of potassium carba2ole in a fro2en glass matrix (160), reactions of free radicals with solvated electrons (155), and reduction of mtheiiium(III)tris(bipyridyl) with the hydrated electron (161). Other examples include the oxidation of aromatic radical anions with such oxidants as chlorine or ben2oyl peroxide (162,163), and the reduction of 9,10-dichloro-9,10-diphenyl-9,10-dihydroanthracene with the 9,10-diphenylanthracene radical anion (162,164). Many other examples of electron-transfer chemiluminescence have been reported (156,165). [Pg.270]

Electrolytic Preparation of Chlorine and Caustic Soda. The preparation of chlorine [7782-50-5] and caustic soda [1310-73-2] is an important use for mercury metal. Since 1989, chlor—alkali production has been responsible for the largest use for mercury in the United States. In this process, mercury is used as a flowing cathode in an electrolytic cell into which a sodium chloride [7647-14-5] solution (brine) is introduced. This brine is then subjected to an electric current, and the aqueous solution of sodium chloride flows between the anode and the mercury, releasing chlorine gas at the anode. The sodium ions form an amalgam with the mercury cathode. Water is added to the amalgam to remove the sodium [7440-23-5] forming hydrogen [1333-74-0] and sodium hydroxide and relatively pure mercury metal, which is recycled into the cell (see Alkali and chlorine products). [Pg.109]

Chlorine heptoxide is more stable than either chlorine monoxide or chlorine dioxide however, the CX C) detonates when heated or subjected to shock. It melts at —91.5°C, bods at 80°C, has a molecular weight of 182.914, a heat of vapori2ation of 34.7 kj/mol (8.29 kcal/mol), and, at 0°C, a vapor pressure of 3.2 kPa (23.7 mm Hg) and a density of 1.86 g/mL (14,15). The infrared spectmm is consistent with the stmcture O CIOCIO (16). Cl O decomposes to chlorine and oxygen at low (0.2—10.7 kPa (1.5—80 mm Hg)) pressures and in a temperature range of 100—120°C (17). It is soluble in ben2ene, slowly attacking the solvent with water to form perchloric acid it also reacts with iodine to form iodine pentoxide and explodes on contact with a flame or by percussion. Reaction with olefins yields the impact-sensitive alkyl perchlorates (18). [Pg.65]

The widespread use of biphenyl and methyl-substituted biphenyls as dye carriers (qv) in the textile industry has given rise to significant environmental concern because of the amount released to the environment in wastewater effluent. Although biphenyl and simple alkylbiphenyls are themselves biodegradable (48—50), the prospect of their conversion by chlorination to PCBs in the course of wastewater treatment has been a subject of environmental focus (51—53). Despite the fact that the lower chlorinated biphenyls are also fairly biodegradable (49,54,55) continued environmental concern has resulted in decreased use of biphenyl as a dye carrier (see Dyes, environmental chemistry). [Pg.118]

Drinking water suppHed to carbonated soft drink manufacturing faciUties from private or municipal sources must comply with all regulatory requirements. Treated water must meet all U.S. Environmental Protection Agency primary maximum contaminant levels and may also be subject to additional state requirements. Treated water is routinely analyzed for taste, odor, appearance, chlorine, alkalinity, iron, pH, total dissolved soHds, hardness, and microbiological contamination. [Pg.15]

Bleaching Powder. This material, known siace 1798, is made by chlorination of slightly moist hydrated lime, calcium hydroxide [1305-62-0] Ca(OH)2- It has the empirical formula Ca(OCl)2 CaCl2 Ca(OH)2 2H20. Its compositioa, loag a subject of coatroversy, was estabHshed by phase studies, microscopy, and x-ray diffraction techniques (241). The initial chlorination products are monobasic calcium chloride [14031-38-4] and dibasic calcium hypochlorite [12394-14-8] ... [Pg.474]

Carbon tetrachloride is the oldest and was the most extensively used chlorinated solvent in degreasing and dry-cleaning operations for many years. Consequently, its narcotic and toxic properties have been the subject of much investigation. Carefiil investigations have repeatedly shown carbon tetrachloride to be one of the most harm fill of the common solvents (37). [Pg.532]

Materials of Construction. GeneraHy, carbon steel is satisfactory as a material of construction when handling propylene, chlorine, HCl, and chlorinated hydrocarbons at low temperatures (below 100°C) in the absence of water. Nickel-based aHoys are chiefly used in the reaction area where resistance to chlorine and HCl at elevated temperatures is required (39). Elastomer-lined equipment, usuaHy PTFE or Kynar, is typicaHy used when water and HCl or chlorine are present together, such as adsorption of HCl in water, since corrosion of most metals is excessive. Stainless steels are to be avoided in locations exposed to inorganic chlorides, as stainless steels can be subject to chloride stress-corrosion cracking. Contact with aluminum should be avoided under aH circumstances because of potential undesirable reactivity problems. [Pg.34]

Benzene chlorination reactors are subject to design and operating hazards. Stagnant areas must be avoided in reactor design as they allow chlorination to the tetra- and pentachlorobenzenes. These compounds have low solubiUty in the Hquid and can cause plugging. Another hazard is the... [Pg.47]

Other chlorinating agents, such as pentachlorocyclohexadienone, have been subjected to laboratory study to make it possible to select each of the isomers (19). The use of 2,3,4,5,6,6-hexachlorocyclohexa-2,4-dien-l-one [21306-21 -8] makes chlorination possible in the ortho position. [Pg.79]

Technical and trade organi2ations are concerned with safety and the environment. The Chlorine Institute in North America and Euro Chlor in Western Europe are examples of organi2ations dedicated to the safe production, transport, and use of chlorine. Ha2ard and operabiHty studies (HAZOP) reviews for new designs, plants, and expansions (135) have become required by poHcy in many operating companies. Papers on safety and environmental subjects are given at most technical meetings (136—138). [Pg.82]

Some authorities question whether dmnkeimess can result from the inhalation of ethyl alcohol vapors. Experience has demonstrated that in any event such intoxication is indeed rare (281). There is no concrete evidence that the inhalation of ethyl alcohol vapor will cause cirrhosis. Liver function is definitely impaired during alcohol intoxication (282), making the subject more susceptible to the toxic effects of chlorinated hydrocarbons. [Pg.414]

Two complementai y reviews of this subject are by Shah et al. AIChE Journal, 28, 353-379 [1982]) and Deckwer (in de Lasa, ed.. Chemical Reactor Design andTechnology, Martinus Nijhoff, 1985, pp. 411-461). Useful comments are made by Doraiswamy and Sharma (Heterogeneous Reactions, Wiley, 1984). Charpentier (in Gianetto and Silveston, eds.. Multiphase Chemical Reactors, Hemisphere, 1986, pp. 104—151) emphasizes parameters of trickle bed and stirred tank reactors. Recommendations based on the literature are made for several design parameters namely, bubble diameter and velocity of rise, gas holdup, interfacial area, mass-transfer coefficients k a and /cl but not /cg, axial liquid-phase dispersion coefficient, and heat-transfer coefficient to the wall. The effect of vessel diameter on these parameters is insignificant when D > 0.15 m (0.49 ft), except for the dispersion coefficient. Application of these correlations is to (1) chlorination of toluene in the presence of FeCl,3 catalyst, (2) absorption of SO9 in aqueous potassium carbonate with arsenite catalyst, and (3) reaction of butene with sulfuric acid to butanol. [Pg.2115]

The chlorination of polypropylene has been the subject of several fundamental studies and a variety of products is obtainable according to the tacticity of the original polymer and to the extent of chlorination. [Pg.268]


See other pages where SUBJECTS chlorine is mentioned: [Pg.156]    [Pg.156]    [Pg.156]    [Pg.156]    [Pg.353]    [Pg.309]    [Pg.319]    [Pg.284]    [Pg.80]    [Pg.119]    [Pg.383]    [Pg.526]    [Pg.50]    [Pg.144]    [Pg.441]    [Pg.445]    [Pg.419]    [Pg.223]    [Pg.141]    [Pg.156]    [Pg.485]    [Pg.507]    [Pg.514]    [Pg.421]    [Pg.32]    [Pg.175]    [Pg.18]    [Pg.2209]    [Pg.549]    [Pg.301]   
See also in sourсe #XX -- [ Pg.1255 ]

See also in sourсe #XX -- [ Pg.1255 ]

See also in sourсe #XX -- [ Pg.457 ]




SEARCH



Chlorine monoxide Subject

Subject chlorination

Subject chlorination

Subject reactions with chlorine

© 2024 chempedia.info