Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chlorides trichloride

Boron trichloride, BCI3. Colourless mobile liquid, m.p. — 107°C, b.p. 12-5°C. Obtained directly from the elements or by heating B2O3 with pels in a sealed tube. The product may be purified by distillation in vacuo. It is extremely readily hydrolysed by water to boric acid. TetrachJoroborates containing the BCJ4 " ion are prepared by addition of BCI3 to metal chlorides. [Pg.65]

Vanadium oxide trichloride, VOCI3, vanadyl chloride. Readily prepared yellow liquid, b.p. 127 C, formed CK plus heated V2OS plus C. Readily hydrolysed by water. [Pg.417]

This compound, which contains atoms arranged tetrahedrally around the boron atom, can readily be isolated from a mixture of dimethyl ether and boron trichloride. On occasions a chlorine atom, in spite of its high election affinity, will donate an electron pair, an example being found in the dimerisation of gaseous monomeric aluminium chloride to give the more stable Al2Clg in which each aluminium has a tetrahedral configuration ... [Pg.42]

Both boron and aluminium chlorides can be prepared by the direct combination of the elements. Boron trichloride can also be prepared by passing chlorine gas over a strongly heated mixture of boron trioxide and carbon. Like boron trifluoride, this is a covalent compound and a gas at ordinary temperature and pressure (boiling point 285 K). It reacts vigorously with water, the mechanism probably involving initial co-ordination of a water molecule (p, 152). and hydrochloric acid is obtained ... [Pg.154]

It forms an ion BCI4 only under special circumstances, and never in aqueous solutions (cf. BF3). Like the trifluoride, it is an electron pair acceptor, but the adducts formed tend to decompose more readily. Unlike the corresponding aluminium chloride, boron trichloride exists only as the monomer. [Pg.155]

Arsenic forms a volatile trifluoride, ASF3, and a fairly volatile trichloride, ASCI3, which fumes in air. The latter is prepared by passing dry hydrogen chloride over arsenic(lll) oxide at 500 K ... [Pg.252]

Here again the simple formulation [Sb ] is used to represent all the cationic species present.) The hydrolysis is reversible and the precipitate dissolves in hydrochloric acid and the trichloride is reformed. This reaction is in sharp contrast to the reactions of phosphorus(III) chloride. [Pg.253]

Chlorine reacts with most elements, both metals and non-metals except carbon, oxygen and nitrogen, forming chlorides. Sometimes the reaction is catalysed by a trace of water (such as in the case of copper and zinc). If the element attacked exhibits several oxidation states, chlorine, like fluorine, forms compounds of high oxidation state, for example iron forms iron(III) chloride and tin forms tin(IV) chloride. Phosphorus, however, forms first the trichloride, PCI3, and (if excess chlorine is present) the pentachloride PCI5. [Pg.322]

Phosphorus trichloride reacts readily with three equivalents of an alcohol e.g, ethanol, in the presence of a tertiary amine such as pyridine, dimethyl-aniline, or diethylaniline, to form triethyl phosphite and hydrogen chloride, the latter being immediately neutralised by the tertiary amine. [Pg.308]

Place 38 ml. of isopropanol in a two-necked 500 ml. round-bottomed flask fitted with (a) a reflux water-condenser having a calcium chloride tube at the top, and (b) a dropping-funnel. Cool the flask in ice-water and then run 13 5 ml. of phosphorus trichloride in from the dropping-funnel during 15 minutes. Then allow the reaction-mixture to attain room temperature. Now replace the condenser and the... [Pg.310]

The success of the Bart reaction when applied to nuclear- substituted anilines is often much affected by the pH of the reaction-mixture. Furthermore, the yields obtained from some m-substituted anilines, which under the normal conditions are usually low, arc considerably increased by the modifications introduced by Scheller, and by Doak, in which the diazotisation is carried out in ethanolic solution followed by reaction with arsenic trichloride in the presence of a cuprous chloride or bromide catalyst. [Pg.312]

Method 1. Use the apparatus depicted iu Fig. Ill, 56, 1, but omit the thermometer also attach a cotton wool (or calcium chloride) tube to the side arm of the filter fiask receiver in order to prevent the entrance of moisture into the apparatus. Mount the reaction fiask in a water bath e.g., a large beaker or other convenient vessel). It is important that all the apparatus be perfectly dry, since both phosphorus trichloride and acetyl chloride are decomposed by water. The set-up should be assembled in the fume eupboard. [Pg.367]

The nitration of sensitive compounds with dinitrogen pentoxide has the advantage of avoiding the use of strong acids or aqueous conditions this has been exploited in the nitration of benzylidyne trichloride and benzoyl chloride, which reacted in carbon tetrachloride smoothly and without hydrolysis. [Pg.52]

The common names of (di chloromethyl)benzene and (trichloromethyl)benzene are benzal chloride and benzo trichloride respectively... [Pg.442]

Chloroacetyl chloride is manufactured by reaction of chloroacetic acid with chlorinating agents such as phosphoms oxychloride, phosphoms trichloride, sulfuryl chloride, or phosgene (42—44). Various catalysts have been used to promote the reaction. Chloroacetyl chloride is also produced by chlorination of acetyl chloride (45—47), the oxidation of 1,1-dichloroethene (48,49), and the addition of chlorine to ketene (50,51). Dichloroacetyl and trichloroacetyl chloride are produced by oxidation of trichloroethylene or tetrachloroethylene, respectively. [Pg.89]

In general, the absorption bands of the actinide ions are some ten times more intense than those of the lanthanide ions. Fluorescence, for example, is observed in the trichlorides of uranium, neptunium, americium, and curium, diluted with lanthanum chloride (15). [Pg.225]

Urea—Phosphate Type. Phosphoric acid imparts flame resistance to ceUulose (16,17), but acid degradation accompanies this process. This degradation can be minimized by iacorporation of urea [57-13-6]. Ph osph oryl a ting agents for ceUulose iaclude ammonium phosphate [7783-28-0] urea—phosphoric acid, phosphoms trichloride [7719-12-2] and oxychloride [10025-87-3] monophenyl phosphate [701-64-4] phosphoms pentoxide [1314-56-3] and the chlorides of partiaUy esterified phosphoric acids (see Cellulose esters, inorganic). [Pg.487]

In France, Compagnie Europnene du Zirconium (CEZUS) now owned jointly by Pechiney, Eramatome, and Cogema, uses a separation (14) based on the extractive distillation of zirconium—hafnium tetrachlorides in a molten potassium chloride—aluminum trichloride solvent at atmospheric pressure at 350°C. Eor feed, the impure zirconium—hafnium tetrachlorides from the zircon chlorination are first purified by sublimation. The purified tetrachlorides are again sublimed to vapor feed the distillation column containing the solvent salt. Hafnium tetrachloride is recovered in an enriched overhead fraction which is accumulated and reprocessed to pure hafnium tetrachloride. [Pg.442]

Alkyltin Intermedia.tes, For the most part, organotin stabilizers are produced commercially from the respective alkyl tin chloride intermediates. There are several processes used to manufacture these intermediates. The desired ratio of monoalkyl tin trichloride to dialkyltin dichloride is generally achieved by a redistribution reaction involving a second-step reaction with stannic chloride (tin(IV) chloride). By far, the most easily synthesized alkyltin chloride intermediates are the methyltin chlorides because methyl chloride reacts directiy with tin metal in the presence of a catalyst to form dimethyl tin dichloride cleanly in high yields (21). Coaddition of stannic chloride to the reactor leads directiy to almost any desired mixture of mono- and dimethyl tin chloride intermediates ... [Pg.547]

The other commercially important routes to alkyltin chloride intermediates utilize an indirect method having a tetraalkjitin intermediate. Tetraalkyltins are made by transmetaHation of stannic chloride with a metal alkyl where the metal is typicaHy magnesium or aluminum. Subsequent redistribution reactions with additional stannic chloride yield the desired mixture of monoalkyl tin trichloride and dialkyltin dichloride. Both / -butjitin and / -octjitin intermediates are manufactured by one of these schemes. [Pg.547]

To avoid high resin chloride content associated with the use of high concentrations of aluminum trichloride, a ttialhylalurninum—water cocatalyst system in a 1.0 0.5 to 1.0 mole ratio has been used in conjunction with an organic chloride for the polymerization of P-pinene (95). Softening points up to 120°C were achieved with 1—3 Gardner unit improvement in color over AlCl produced resins. [Pg.357]

The reaction of 2-methyla2iridine with boron trichloride [10294-34-5] lea.ds to replacement of all three chlorides by ayiridine rings to form tri(methylethyleneimine) boron [17862-61-2] (152). The reaction of boron trifluoride [7637-07-2] with ethyleneimine at — 78°C proceeds via substitution and subsequent ring opening to yield A/-P-fluoroethyl-fl-difluorobora2ene (153). [Pg.6]

Halides. Indium trichloride [10025-83-8] InCl, can be made by heating indium in excess chlorine or by chlorinating lower chlorides. It is a white crystalline soHd, deUquescent, soluble in water, and has a high vapor pressure. InCl forms chloroindates, double salts with chlorides of alkaLi metals, and organic bases. [Pg.81]

Another method of purifying niobium is by distillation of the anhydrous mixed chlorides (29). Niobium and tantalum pentachlorides boil within about 15°C of one another which makes control of the process difficult. Additionally, process materials must withstand the corrosion effects of the chloride. The system must be kept meticulously anhydrous and air-free to avoid plugging resulting from the formation of niobium oxide trichloride, NbOQ. Distillation has been used commercially in the past. [Pg.23]

Niobium Pent chloride. Niobium pentachloride can be prepared in a variety of ways but most easily by direct chlorination of niobium metal. The reaction takes place at 300—350°C. Chlorination of a niobium pentoxide—carbon mixture also yields the pentachloride however, generally the latter is contaminated with niobium oxide trichloride. The pentachloride is a lemon-yeUow crystalline soHd that melts to a red-orange Hquid and hydrolyzes readily to hydrochloric acid and niobic acid. It is soluble in concentrated hydrochloric and sulfuric acids, sulfur monochloride, and many organic solvents. [Pg.27]

Phosgene can be employed in a variety of metal-recovery operations, eg, in the recovery of platinum, uranium, plutonium, and niobium (69—73). Phosgene has been proposed for the manufacture of aluminum chloride, beryllium chloride, and boron trichloride (74—76). Phosgene has been patented as a stabilizer, either by itself or in combination with thionyl chloride, for Hquid SO2 (77). [Pg.315]

Uses. The largest usage of PCl is to produce phosphonic acid, H PO, which in reaction with iminodiacetic acid and formaldehyde forms a glyphosate intermediate that is decarboxymethylated to glyphosate, an effective nonselective herbicide (see Herbicides). Phosphoms trichloride is also a convenient chlorinating reagent for producing various acyl and alkyl chlorides. [Pg.368]


See other pages where Chlorides trichloride is mentioned: [Pg.425]    [Pg.425]    [Pg.25]    [Pg.219]    [Pg.239]    [Pg.278]    [Pg.279]    [Pg.252]    [Pg.309]    [Pg.310]    [Pg.368]    [Pg.401]    [Pg.46]    [Pg.266]    [Pg.293]    [Pg.87]    [Pg.502]    [Pg.509]    [Pg.509]    [Pg.315]    [Pg.479]    [Pg.117]   


SEARCH



Aluminium trichloride/methylene chloride

Aluminum chloride trichloride

Aluminum trichloride-metal chloride

Phenyltungsten trichloride-Aluminum chloride

Phosphorus trichloride chloride

Preparation from Phosphorus(III) Chloride, Aluminum Trichloride, and Elemental Sulfur

Thionyl Chloride and Phosphorus Trichloride

© 2024 chempedia.info