Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potassium chloride, molten

In France, Compagnie Europnene du Zirconium (CEZUS) now owned jointly by Pechiney, Eramatome, and Cogema, uses a separation (14) based on the extractive distillation of zirconium—hafnium tetrachlorides in a molten potassium chloride—aluminum trichloride solvent at atmospheric pressure at 350°C. Eor feed, the impure zirconium—hafnium tetrachlorides from the zircon chlorination are first purified by sublimation. The purified tetrachlorides are again sublimed to vapor feed the distillation column containing the solvent salt. Hafnium tetrachloride is recovered in an enriched overhead fraction which is accumulated and reprocessed to pure hafnium tetrachloride. [Pg.442]

Increasing the concentration of potassium chloride, KCI, in the molten system K2TaF7 - KCI leads to the spectral transformation (Fig. 78, a), which is similar to that observed in the case of K2TaF7 - KF. The intensity of the band at 600 cm 1 decreases while the intensity of the band at 540 cm 1 increases. When KCI concentration is equal to, or greater than 0.8 mol fractions, the band at 600 cm 1 disappears and the only band observed is at 540 cm 1. The above behavior of the system can be explained by the following interaction between hexafluorotantalate ions, TaF6 and chloride ions, CF ... [Pg.182]

The H-type cell devised by Lingane and Laitinen and shown in Fig. 16.9 will be found satisfactory for many purposes a particular feature is the built-in reference electrode. Usually a saturated calomel electrode is employed, but if the presence of chloride ion is harmful a mercury(I) sulphate electrode (Hg/Hg2 S04 in potassium sulphate solution potential ca + 0.40 volts vs S.C.E.) may be used. It is usually designed to contain 10-50 mL of the sample solution in the left-hand compartment, but it can be constructed to accommodate a smaller volume down to 1 -2 mL. To avoid polarisation of the reference electrode the latter should be made of tubing at least 20 mm in diameter, but the dimensions of the solution compartment can be varied over wide limits. The compartments are separated by a cross-member filled with a 4 per cent agar-saturated potassium chloride gel, which is held in position by a medium-porosity sintered Pyrex glass disc (diameter at least 10 mm) placed as near the solution compartment as possible in order to facilitate de-aeration of the test solution. By clamping the cell so that the cross-member is vertical, the molten... [Pg.609]

The alkali metals are the most violently reactive of all the metals. They are too easily oxidized to be found in the free state in nature and cannot be extracted from their compounds by ordinary chemical reducing agents. The pure metals are obtained by electrolysis of their molten salts, as in the electrolytic Downs process (Section 12.13) or, in the case of potassium, by exposing molten potassium chloride to sodium vapor ... [Pg.708]

Weaver MJ, Inman D (1975) The sulphur-sulphide electrode in molten salts-1 Chronopotentiometric behaviour in lithium chloride-potassium chloride eutectic. Electrochim Acta 20 929-936... [Pg.74]

Apart from the fluoride, mercuric halides react explosively with potassium like all analogues of the other metals already mentioned. With mercurous salts, the reaction seems less violent since with mercurous chloride, molten potassium causes the mixture to incandesce without ever combusting. It is likely that other metals react too an extreme violent reaction was mentioned between indium and mercuric bromide. [Pg.230]

The volatilities of both zirconium tetrachloride and hafnium tetrachloride are very similar to each other at normal operating temperatures, and their separation by a simple distillation or fractional distillation operation is not viable. However, when the mixed chloride vapor is contacted with an eutectic molten salt mixture of aluminum chloride and potassium chloride, zirconium chloride is preferentially absorbed. The vapor pressure difference between zirconium and hafnium tetrachlorides is greatly enhanced over the molten... [Pg.410]

The metallic impurities present in an impure metal can be broadly divided into two groups those nobler (less electronegative) and those less noble or baser (more electronegative) as compared to the metal to be purified. Purification with respect to these two classes of impurities occurs due to the chemical and the electrochemical reactions that take place at the anode and at the cathode. At the anode, the impurities which are baser than the metal to be purified would go into solution by chemical displacement and by electrochemical reactions whereas the nobler impurities would remain behind as sludges. At the cathode, the baser impurities would not get electrolytically deposited because of the unfavorable electrode potential and the concentration of these impurities would build up in the electrolyte. If, however, the baser impurities enter the cell via the electrolyte or from the construction materials of the cell, there would be no accumulation or build up because these would readily co-deposit at the cathode and contaminate the metal. It is for this reason that it is extremely important to select the electrolyte and the construction materials of the cell carefully. In actual practice, some of the baser impurities do get transferred to the cathode due to chemical reactions. As an example, let the case of the electrorefining of vanadium in a molten electrolyte composed of sodium chloride-potassium chloride-vanadium dichloride be considered. Aluminum and iron are typically considered as baser and nobler impurities in the metal. When the impure metal is brought into contact with the molten electrolyte, the following reaction occurs... [Pg.716]

The electrolyte is made by in situ chlorination of vanadium to vanadium dichloride in a molten salt bath. Higher valent chlorides are difficult to retain in the bath and thus are not preferred. The molten bath, which is formed by sodium chloride or an equimolar mixture of potassium chloride-sodium chloride or of potassium chloride-lithium chloride or of sodium chloride-calcium chloride, is contained in a graphite crucible. The crucible also serves as an anode. Electrolysis is conducted at a temperature about 50 °C above the melting point of the salt bath, using an iron or a molybdenum cathode and a cathode current density of 25 to 75 A dnT2. The overall electrochemical deposition reaction involves the formation and the discharge of the divalent ionic species, V2+ ... [Pg.720]

The quality of the refined metal, and the current efficiency strongly depend on the soluble vanadium in the bath and the quality of the anode feed. As the amount of vanadium in the anode decreases, the current efficiency and the purity of the refined product also decrease. A laboratory preparation of the metal with a purity of better than 99.5%, containing low levels of nitrogen (30-50 ppm) and of oxygen (400-1000 ppm) has been possible. The purity obtainable with potassium chloride-lithium chloride-vanadium dichloride and with sodium chloride-calcium chloride-vanadium dichloride mixtures is better than that obtainable with other molten salt mixtures. The major impurities are iron and chromium. Aluminum also gets dissolved in the melt due to chemical and electrochemical reactions but its concentrations in the electrolyte and in the final product have been found to be quite low. The average current efficiency of the process is about 70%, with a metal recovery of 80 to 85%. [Pg.720]

The electroextraction process for molybdenum involves the use of its oxides, carbides or sulfides as soluble anodes in a potassium chloride-potassium hexachloromolybdate (K3MoCl6) molten electrolyte. An inert atmosphere electrolytic cell, with a provision for semicontinuous electrolysis, is used for this purpose. The process operation consists of the following steps. [Pg.721]

Electrolysis cyclic voltammetry molten salts carbamide potassium chloride ammonium chloride compound adsorbtion. [Pg.435]

The catalyst, and the source of the oxygen, is cupric oxide dissolved in a molten mixture of cupric chloride and potassium chloride. Developed by Lummus Corporation. [Pg.274]

An extreme example of the measurement of solution enthalpies is provided by that of lanthanum trichloride in molten potassium chloride. The value reported, which refers to infinite dilution, is - 20.8 kcal mol-1 (-87.0 kJ mol-1), at 890°C (223). This value is comparable with those for dissolution in lower alcohols at normal temperatures. [Pg.91]

Preparation. It is obtained by the reaction of metallic sodium with molten potassium chloride at 850°C ... [Pg.337]

O The element potassium is made industrially by the single displacement reaction of molten sodium with molten potassium chloride. [Pg.472]

Potassium is the eighth most abundant element in the Earths crust, which contains about 2.6% potassium, but not in natural elemental form. Potassium is slightly less abundant than sodium. It is found in almost all solids on Earth, in soil, and in seawater, which contains 380 ppm of potassium in solution. Some of the potassium ores are sylvite, carnallite, and polyha-lite. Ore deposits are found in New Mexico, California, Salt Lake in Utah, Germany, Russia, and Israel. Potassium metal is produced commercially by two processes. One is thermochemical distillation, which uses hot vapors of gaseous NaCl (sodium chloride) and KCl (potassium chloride) the potassium is cooled and drained off as molten potassium, and the sodium chloride is discharged as a slag. The other procedure is an electrolytic process similar to that used to produce hthium and sodium, with the exception that molten potassium chloride (which melts at about 770°C) is used to produce potassium metal at the cathode (see figure 4.1). [Pg.54]

Potassium chloride (KCl) is used in drug preparations and as a food additive and chemical reagent. It is possible to reduce the sodium in your diet by substituting potassium chloride for table salt (sodium chloride), which may be healthier. Molten potassium chloride is also used in the electrolytic production of metaUic potassium. KCl is also found in seawater brine and can be extracted from the mineral carnalhte. [Pg.56]

Strontium metal is not found in its elemental state in nature. Its salts and oxide compounds constitute only 0.025% of the Earths crust. Strontium is found in Mexico and Spain in the mineral ores of strontianite (SrCO ) and celestite (SrSO ). As these ores are treated with hydrochloric acid (HCl), they produce strontium chloride (SrCy that is then used, along with potassium chloride (KCl), to form a eutectic mixture to reduce the melting point of the SrCl, as a molten electrolyte in a graphite dish-shaped electrolysis apparatus. This process produces Sr cations collected at the cathode, where they acquire electrons to form strontium metal. At the same time, Cl anions give up electrons at the anode and are released as chlorine gas Cl T. [Pg.77]

Binary Compounds. The thermodynamics of the formation of HfCl2, of HfCl4, fused sodium and potassium chlorides have been described. The reduction of ZrXj (X = Cl, Br, or I) with metallic Zr or A1 in molten AICI3 has been studied at temperatures from 250 to 360 °C, depending on the halide. The electronic spectra of the initial reaction products were consistent with either a solvated Zr complex or an intervalence Zr "-Zr" species. Further reduction resulted in the precipitation of reduction products which were identified by analysis and i.r., electronic, and X-ray powder diffraction spectra. The stability of the trihalides with respect to disproportionation was observed to increase from chloride to iodide thus ZrC and ZrCl2,0.4AlCl3 were precipitated, whereas only Zrlj was formed. ... [Pg.29]

Hafnium tetrachloride combines with molten sodium chloride, potassium chloride, or other alkali halides to form addition products such as 2NaCl HfCl4, which decompose at higher temperatures. [Pg.334]

Also high purity lanthanum may be produced by electrolysis of a molten mixture of anhydrous lanthanum chloride and sodium chloride or potassium chloride at elevated temperatures. [Pg.446]

In the electrolytic process, a fused mixture of anhydrous rare earth chlorides (obtained above) and sodium or potassium chloride is electrolyzed in an electrolytic cell at 800 to 900°C using graphite rods as the anode. The cell is constructed of iron, carbon or refractory hnings. Molten metal settles to the bottom and is removed periodically. [Pg.600]

Electrolysis processes have been known since Davy first isolated the metal in 1807. Electrolysis, however, suffers from certain disadvantages. A major problem involves miscibility of the metal with its fused salts. Because of this molten potassium chloride, unlike sodium chloride, cannot be used to produce the metal. Fused mixtures of potassium hydroxide and potassium carbonate... [Pg.733]

Chemical reduction processes are employed nowadays in commercial, as well as, laboratory preparation of potassium. In one such process, molten potassium chloride is reduced with sodium at 760 to 880°C and the free metal is separated by fractionation ... [Pg.734]


See other pages where Potassium chloride, molten is mentioned: [Pg.224]    [Pg.323]    [Pg.585]    [Pg.24]    [Pg.333]    [Pg.411]    [Pg.695]    [Pg.1749]    [Pg.387]    [Pg.48]    [Pg.368]    [Pg.304]    [Pg.323]    [Pg.326]    [Pg.530]    [Pg.533]    [Pg.533]    [Pg.537]    [Pg.550]    [Pg.553]    [Pg.579]    [Pg.623]   
See also in sourсe #XX -- [ Pg.187 ]




SEARCH



Chlorides, molten

Monte Carlo Simulation of Molten Potassium Chloride

Potassium chlorid

© 2024 chempedia.info