Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water soluble chloride

Precursor-product relationships were studied in peanut cell cultures grown in B-5 Medium (8) that contained 2.8 ppm ( ClPCNB and 100 ppm 2,4-D. The liquid shake cultures were harvested after 3 hr, 9 hr, 24 hr, 3 days, 7 days and 14 days. The cells were extracted with 80% methanol and the extracts were made aqueous and partitioned against methylene chloride. Water-soluble metabolites were purified by various chromatographic methods and Identified by mass spectrometry in a manner similar... [Pg.135]

To this group of constituents usually belong the following substances AK, Na nitrate, Na chloride, water soluble portions of carbonaceous materials and traces of Ca and Zn salts. A small amt of Amm chloride which. may be present as an impurity, is not determined separately Extraction Procedure ... [Pg.526]

Change in Strength (see ease of dispersion and PVC) Chemical resistance Chlorides, water-soluble (see matter soluble) Chromium oxide pigments 2812-1 ISO 2812-1 EN ISO 2812-1... [Pg.2]

Conservative, non-labile parameters such as toxic metals, chloride, water soluble boron, elemental sulfur are analysed on the air-dried sample (30 5°C) after crushing and grinding, whilst labile and more volatile substances are analysed on the as received sample and the results converted to an air-dried basis after air drying a representative separate aliquot of the sample. The sampling for these labile and more volatile substances in the as received sample is more prone to error (i.e. lower precision) than sampling an air-dried, crushed and ground sample but ensures that the analyses are fit for purpose with respect to bias. [Pg.13]

On acetylation it gives acetanilide. Nitrated with some decomposition to a mixture of 2-and 4-nitroanilines. It is basic and gives water-soluble salts with mineral acids. Heating aniline sulphate at 190 C gives sulphanilic add. When heated with alkyl chlorides or aliphatic alcohols mono- and di-alkyl derivatives are obtained, e.g. dimethylaniline. Treatment with trichloroethylene gives phenylglycine. With glycerol and sulphuric acid (Skraup s reaction) quinoline is obtained, while quinaldine can be prepared by the reaction between aniline, paraldehyde and hydrochloric acid. [Pg.35]

In view of your comments, discuss why sodium chloride is soluble in water. [Pg.83]

The solid has a layer structure (p. 434). Lead(ir) iodide, like lead(Il) chloride, is soluble in hot water but on cooling, appears in the form of glistening golden spangles . This reaction is used as a test for lead(II) ions in solution. [Pg.200]

The azides are salts which resemble the chlorides in solubility behaviour, for example silver azide, AgNj, is insoluble and sodium azide, NaN3, soluble in water. Sodium azide is prepared by passing dinitrogen oxide over molten sodamide ... [Pg.225]

Iron(III) chloride forms numerous addition compounds, especially with organic molecules which contain donor atoms, for example ethers, alcohols, aldehydes, ketones and amines. Anhydrous iron(III) chloride is soluble in, for example, ether, and can be extracted into this solvent from water the extraction is more effective in presence of chloride ion. Of other iron(III) halides, iron(III) bromide and iron(III) iodide decompose rather readily into the +2 halide and halogen. [Pg.394]

Although benzenesulphonyl chloride has for simplicity been used in the above discussion, tolucne-/>- sulphonyl chloride, CHaCeH SO Cl, is more frequently used in the laboratory, owing to its much lower cost, the latter being due in turn to the fact that toluene-p-sulphonyl chloride is a by-product in the commercial preparation of saccharin. Toluene-p sulphonyl chloride is a crystalline substance, of m.p. 68° the finely powdered chloride will, however, usually react readily with amines in the Schotten-Baumann reaction it does not react so readily with alcohols, but the reaction may be promoted considerably by first dissolving the chloride in some inert water-soluble solvent such as acetone. [Pg.249]

Dilute hydrochloric or sulphuric acid finds application in the extraction of basic substances from mixtures or in the removal of basic impurities. The dilute acid converts the base e.g., ammonia, amines, etc.) into a water-soluble salt e.g., ammonium chloride, amine hydrochloride). Thus traces of aniline may be separated from impure acetanilide by shaking with dilute hydrochloric acid the aniline is converted into the soluble salt (aniline hydrochloride) whilst the acetanilide remains unaffected. [Pg.151]

The resulting esters differ sufficiently in odour and water solubility to be readily distinguished from the original alcohol. With tertiary alcohols the product is largely the alkyl chloride ... [Pg.1067]

Bemoyl chloride may replace acetyl chloride as a class reagent it possesses the advantage that it is only very slowly decomposed by cold water and consequently may be employed for detecting alcohols even in aqueous solution. The reaction is usually carried out in aqueous solution containing sufficient caustic alkali to decompose any excess of benzoyl chloride into the water-soluble alkali benzoate (Schotten - Baumann reaction compare Section IV,52). The benzoyl esters formed are insoluble in water ... [Pg.1067]

Cationic monomers are used to enhance adsorption on waste soHds and faciHtate flocculation (31). One of the first used in water treatment processes (10) is obtained by the cyclization of dimethyldiallylammonium chloride in 60—70 wt % aqueous solution (43) (see Water). Another cationic water-soluble polymer, poly(dimethylarnine-fi9-epichlorohydrin) (11), prepared by the step-growth... [Pg.318]

Oligomeric Vinylphosphonate. A water-soluble oligomer, Fyrol 76 [41222-33-7] is produced by reaction of bis(2-chloroethyl) vinylphosphonate and dimethyl methylphosphonate with elimination of all the chlorine as methyl chloride (127,128). This Hquid, containing 22.5% P, is curable by free-radical initiation, on cotton or other fabrics. Nitrogen components, such as A/-methylolacrylamide or methylolmelamines, are usually included in the finish, which can be durable to multiple launderings (129,130). [Pg.480]

Hydrogen Chloride—Water System. Hydrogen chloride is highly soluble in water and this aqueous solution does not obey Henry s law at ah concentrations. Solubhity data are summarized in Table 5. The relationship between the pressure and vapor composition of unsaturated aqueous hydrochloric acid solutions is given in Reference 12. The vapor—Hquid equiHbria for the water—hydrogen chloride system at pressures up to 1632 kPa and at temperatures ranging from —10 to +70° C are documented in Reference 13. [Pg.439]

Hydrogen Chloride-Organic Compound Systems. The solubihty of hydrogen chloride in many solvents follows Henry s law. Notable exceptions are HCl in polyhydroxy compounds such as ethylene glycol (see Glycols), which have characteristics similar to those of water. Solubility data of hydrogen chloride in various organic solvents are Hsted in Table 10. [Pg.443]

Yellow mercuric oxide may be obtained by precipitation from solutions of practically any water-soluble mercuric salt through the addition of alkah. The most economical are mercuric chloride or nitrate. Although yellow HgO has some medicinal value in ointments and other such preparations, the primary use is as a raw material for other mercury compounds, eg, Millon s ha.se[12529-66-7], Hg2NOH, which is formed by the reaction of aqueous ammonia and yellow mercuric oxide. [Pg.113]

Solvent Evaporation. This encapsulation technology involves removing a volatile solvent from either an oil-in-water, oil-in-oil, or water-in-oH-in-water emulsion (19,20). In most cases, the shell material is dissolved in a volatile solvent such as methylene chloride or ethyl acetate. The active agent to be encapsulated is either dissolved, dispersed, or emulsified into this solution. Water-soluble core materials like hormonal polypeptides are dissolved in water that contains a thickening agent before dispersion in the volatile solvent phase that contains the shell material. This dispersed aqueous phase is gelled thermally to entrap the polypeptide in the dispersed aqueous phase before solvent evaporation occurs (21). [Pg.321]

Physical Properties. Nitrobenzene is readily soluble in most organic solvents and is completely miscible with diethyl ether and benzene. Nitrobenzene is only slightly soluble in water with a solubiUty of 0.19 parts pet 100 parts of water at 20°C and 0.8 pph at 80°C. Nitrobenzene is a good organic solvent. For example, it is used in Friedel-Crafts reactions because aluminum chloride is soluble in nitrobenzene. The physical properties of nitrobenzene are summarized in Table 1. [Pg.63]

These rosin-based sizes, whether paste, Hquid, or emulsions, can be used to size all grades of paper that are produced at acid pH. The latter include bleached or unbleached kraft Hnerboard and bag paper, bleached printing and writing grades, and cylinder board. In addition, polyaluminum compounds have been used in place of alum, most notably, polyaluminum chloride (48), which can reduce barium deposits where these have been a problem. The barium chloride by-product is more water-soluble than barium sulfate. Other polyaluminum compounds such as polyhydroxylated forms of alum and polyaluminum siHcosulfate have been evaluated as alum replacements. [Pg.18]

Binary Compounds. The mthenium fluorides are RuF [51621 -05-7] RuF [71500-16-8] tetrameric (RuF ) [14521 -18-7] (15), and RuF [13693-087-8]. The chlorides of mthenium are RUCI2 [13465-51-5] an insoluble RuCl [10049-08-8] which exists in an a- and p-form, mthenium trichloride ttihydrate [13815-94-6], RuCl3-3H2 0, and RuCl [13465-52-6]. Commercial RuCl3-3H2 0 has a variable composition, consisting of a mixture of chloro, 0x0, hydroxo, and often nitrosyl complexes. The overall mthenium oxidation state is closer to +4 than +3. It is a water-soluble source of mthenium, and is used widely as a starting material. Ruthenium forms bromides, RuBr2 [59201-36-4] and RuBr [14014-88-1], and an iodide, Rul [13896-65-6]. [Pg.177]

Four minerals are the principal commercial sources of potash (Table 2). In all ores, sodium chloride is the principal soluble contaminant. Extraneous water-iasoluble material, eg, clay and siUca, is a significant contaminant ia some of the evaporates being mined from underground deposits. Some European potassium ores contain relatively large amounts of the mineral kieserite, MgS04-H2 0. It is recovered for captive use to produce potassium sulfate compounds or is marketed ia relatively pure form as a water-soluble magnesium fertilizer. [Pg.523]


See other pages where Water soluble chloride is mentioned: [Pg.422]    [Pg.422]    [Pg.1133]    [Pg.457]    [Pg.331]    [Pg.842]    [Pg.422]    [Pg.422]    [Pg.1133]    [Pg.457]    [Pg.331]    [Pg.842]    [Pg.305]    [Pg.434]    [Pg.89]    [Pg.191]    [Pg.330]    [Pg.340]    [Pg.367]    [Pg.232]    [Pg.278]    [Pg.489]    [Pg.419]    [Pg.445]    [Pg.222]    [Pg.517]    [Pg.20]    [Pg.176]    [Pg.177]    [Pg.497]    [Pg.125]   
See also in sourсe #XX -- [ Pg.106 ]




SEARCH



Chlorides water

Sodium chloride solubility in water

Solubility chloride

Water chlorids

Water-soluble sulfates, chlorides and nitrates

© 2024 chempedia.info