Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chlorate, determination

The Committee noted that the occurrence data submitted for chlorite and chlorate, determined using good manufacturing practice for ASC-treated foods, were sufficient to be used in the assessment. These occurrence data were used with national diet data for EU countries and the 13 GEMS/Food Consumption Cluster Diets in a dietary exposure scenario whereby all treated food categories consumed contained chlorite and chlorate at the maximum residual concentrations. [Pg.49]

Thermal decomposition of perchlorate salts to chloride, followed by the gravimetric determination of the resulting chloride, is a standard method of determining quantitatively the concentration of perchlorates. Any chlorates that are present in the original sample also break down to chloride. Thus results are adjusted to eliminate errors introduced by the presence of any chlorides and chlorates in the original sample. [Pg.68]

Quantitatively, sulfur in a free or combined state is generally determined by oxidizing it to a soluble sulfate, by fusion with an alkaH carbonate if necessary, and precipitating it as insoluble barium sulfate. Oxidation can be effected with such agents as concentrated or fuming nitric acid, bromine, sodium peroxide, potassium nitrate, or potassium chlorate. Free sulfur is normally determined by solution in carbon disulfide, the latter being distilled from the extract. This method is not useful if the sample contains polymeric sulfur. [Pg.124]

Chlorate Analysis. Chlorate ion concentration is determined by reaction with a reducing agent. Ferrous sulfate is preferred for quaHty control (111), but other reagents, such as arsenious acid, stannous chloride, and potassium iodide, have also been used (112). When ferrous sulfate is used, a measured excess of the reagent is added to a strong hydrochloric acid solution of the chlorate for reduction, after which the excess ferrous sulfate is titrated with an oxidant, usually potassium permanganate or potassium dichromate. [Pg.499]

Procedure. To obtain experience in the method, the purity of analytical-grade potassium chlorate may be determined. Prepare a 0.02M potassium chlorate solution. Into a 250 mL conical flask, place 25.0 mL of the potassium chlorate solution, 25.0mL of 0.2M ammonium iron(II) sulphate solution in 2M sulphuric acid and add cautiously 12 mL concentrated sulphuric acid. Heat the mixture to boiling (in order to ensure completion of the reduction), and cool to room temperature by placing the flask in running tap water. Add 20 mL 1 1 water/phosphoric(V) acid, followed by 0.5 mL sodium diphenyl-amine-sulphonate indicator. Titrate the excess Fe2+ ion with standard 0.02M potassium dichromate to a first tinge of purple coloration which remains on stirring. [Pg.378]

In another method the chlorate is reduced with bromide in the presence of ca 8M hydrochloric acid, and and the bromine liberated is determined iodimetrically ... [Pg.394]

Fluoride ion, and weak acids and bases do not interfere, but nitrate, nitrite, perchlorate, thiocyanate, chromate, chlorate, iodide, and bromide do. Since analysis of almost all boron-containing compounds requires a preliminary treatment which ultimately results in an aqueous boric acid sample, this procedure may be regarded as a gravimetric determination of boron. [Pg.476]

Discussion. These anions are both determined as silver bromide, AgBr, by precipitation with silver nitrate solution in the presence of dilute nitric acid. With the bromate, initial reduction to the bromide is achieved by the procedures described for the chlorate (Section 11.56) and the iodate (Section 11.63). Silver bromide is less soluble in water than is the chloride. The solubility of the former is 0.11 mg L 1 at 21 °C as compared with 1.54 mg L 1 for the latter hence the procedure for the determination of bromide is practically the same as that for chloride. Protection from light is even more essential with the bromide than with the chloride because of its greater sensitivity (see Section 11.57). [Pg.477]

Determination of chlorate as silver chloride Discussion. The chlorate is reduced to chloride, and the latter is determined as silver chloride, AgCl. The reduction may be performed with iron(II) sulphate solution, sulphur dioxide, or by zinc powder and acetic (ethanoic) acid. Alkali chlorates may be quantitatively converted into chlorides by three evaporations with concentrated hydrochloric acid, or by evaporation with three times the weight of ammonium chloride. [Pg.479]

Determination of nitrate as nitron nitrate Discussion. The mono-acid base nitron, C20H16N4, forms a fairly insoluble crystalline nitrate, C20H 16N4,HN03 (solubility is 0.099 g L 1 at about 20 °C), which can be used for the quantitative determination of nitrates [see Section 11.11(E)]. The sulphate and acetate are soluble so that precipitation may be made in sulphuric or acetic (ethanoic) acid solution. Perchlorates (0.08 g), iodides (0.17 g), thiocyanates (0.4 g), chromates (0.6 g), chlorates (1.2g), nitrites (1.9 g), bromides (6.1 g), hexacyanoferrate(II), hexacyanoferrate(III), oxalates, and considerable quantities of chlorides interfere, and should be absent. The figures in parentheses are the approximate solubilities of the nitron salts in g L-1 at about 20 °C. [Pg.484]

The kinetics of the reduction of chlorate ion by Ir(III) have been determined by controlled-potential electrolysis to be ... [Pg.441]

When hot, ammonia and compounds, which contain nitrogen-hydrogen bonds eg ammonium salts and cyanides react violently with chlorates and alkaline perchlorates. Diammonlum sulphate, ammonium chloride, hydroxyl-amine, hydrazine, sodamide, sodium cyanide and ammonium thiocyanate have been cited. So far as hydrazine is concerned, the danger comes from the formation of a complex with sodium or lithium perchlorate, which is explosive when ground. Many of these interactions are explosive but the factors which determine the seriousness of the accident are not known. [Pg.191]

Determine the number of grams of chloric acid that will just react with 20.0 g of calcium carbonate to produce carbon dioxide, water, and calcium chlorate. [Pg.140]

The potential for explosive combustion of mixture of sodium chlorate-based herbicides with other combustible agricultural materials was determined. Initiation temperatures and maximum combustion temperatures were measured for mixtures of sodium (or potassium) chlorate with peat, powdered sulfur, sawdust, urotropine (hexamethylenetetramine), thiuram and other formulated materials. With many combinations, maximum temperature increases of 500-1000°C at rates of 400-12007s were recorded for 2 g samples. [Pg.1393]

Impact sensitivities of mixtures of red phosphorus with various oxidants were determined in a direct drop-ball method, which indicated higher sensitivities than those determined with an indirect striker mechanism. Mixtures with silver chlorate were most sensitive, those with bromates, chlorates and chlorites were extremely sensitive, and mixtures with sodium peroxide and potassium superoxide were more sensitive than those with barium, calcium, magnesium, strontium or zinc peroxides. Mixtures with perchlorates or iodates had sensitivities comparable to those of unmixed explosives, such as lead azide, 3,5-dinitrobenzenediazonium-2-oxide etc. [Pg.1888]

The self-ignition of sulfur with potassium chlorate or iodine(V) oxide at 145-160°C, and with potassium perchlorate at 385°C was studied using DTA [1], and combustion characterisitics of the mixtures were determined [2],... [Pg.1902]

Zhan and Mao [60] used a simple, fast, and selective alternating current oscilloscop-ic polarographic titration method for the determination of primaquine and other alkaloid phosphate in pharmaceutical preparation. The titration was carried out with a standard lead solution in hexamethylene tetramine buffer containing 1 M sodium chlorate (pH 5.5). The results obtained by this method are comparable to those obtained by pharmacopoeial method. [Pg.184]

In chlorate production the EMOS system has also been used to determine the formation of deposits on the electrodes, either the anode or cathode and combined with the information on process and electrolyte composition the system determines the need for cell cleaning or acid rinsing. The close monitoring of individual cell voltages has allowed plant engineers to establish the most appropriate current density for production lines dependent upon the state of the anode coatings. This allows for the same overall production capacity while permitting the operation of two different cell lines in the cell room at different current densities based upon the state of the anodes and cathodes in the cell. [Pg.125]

Other inorganic crystals studied by Mark and his collaborators, sometimes leading to complete structure determinations, include strontium chloride, zinc hydroxide, tin tetraiodide, potassium chlorate, potassium permanganage, and ammonium ferrocyanide. Minerals investigated by them include CaSO (anhydrite), BaSO (barite), PbSO, Fe2TiO[j (pseudobrookite), and three forms of Al2Si05 (cyanite, andalusite, and sillimanite). [Pg.95]

For the determination of halogen in liquids weigh the substance in the manner described for C and H determination and introduce the weighing tube into the combustion tube in such a way that the former rests about 8-10 cm. beyond the front end of the long wire gauze roll. For liquids which burn with very great difficulty substitute ammonium nitrate for the potassium chlorate. [Pg.74]

Example Estimation of chlorate —an oxidant by iodometric determination. In this particular instance two things may happen, namely ... [Pg.72]

Barnett DA, Guevremont R, Purves RW (1999) Determination of parts-per-trillion levels of chlorate, bromate, and iodate by electrospray ionization/high-field asymmetric waveform ion mobility spectrometry/mass spectrometry. Appl Spectrosc 53(11) 1367-1374... [Pg.136]

Beitler MK, Chin HB. 1995. Improved determination of chlorite and chlorate in rinse water from carrots and green beans by liquid chromatography and amperometric and conductivity detection. J AO AC Int 78(3) 878-883. [Pg.129]

Dietrich AM, Ledder TD, Gallagher DL, et al. 1992. Determination of chlorite and chlorate in chlorinated and chloraminated drinking water by flow injection analysis and ion chromatography. Anal Chem 64 498-502. [Pg.131]

Kim J, Marshall MR, Du WX, et al. 1999. Determination of chlorate and chlorite and mutagenicity of seafood treated with aqueous chlorine dioxide. J Agric Food Chem 47 3586-3591. [Pg.136]


See other pages where Chlorate, determination is mentioned: [Pg.1213]    [Pg.490]    [Pg.1213]    [Pg.490]    [Pg.308]    [Pg.347]    [Pg.483]    [Pg.378]    [Pg.394]    [Pg.443]    [Pg.620]    [Pg.652]    [Pg.743]    [Pg.354]    [Pg.622]    [Pg.52]    [Pg.314]    [Pg.180]    [Pg.57]    [Pg.237]    [Pg.396]    [Pg.295]    [Pg.37]    [Pg.45]    [Pg.65]   
See also in sourсe #XX -- [ Pg.79 , Pg.170 , Pg.230 ]




SEARCH



Determination of chlorate

Volumetric Determination of Chlorate

© 2024 chempedia.info