Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral stationary phases proteins

Chiral Chromatography. Chiral chromatography is used for the analysis of enantiomers, most useful for separations of pharmaceuticals and biochemical compounds (see Biopolymers, analytical techniques). There are several types of chiral stationary phases those that use attractive interactions, metal ligands, inclusion complexes, and protein complexes. The separation of optical isomers has important ramifications, especially in biochemistry and pharmaceutical chemistry, where one form of a compound may be bioactive and the other inactive, inhibitory, or toxic. [Pg.110]

Separation of enantiomers by physical or chemical methods requires the use of a chiral material, reagent, or catalyst. Both natural materials, such as polysaccharides and proteins, and solids that have been synthetically modified to incorporate chiral structures have been developed for use in separation of enantiomers by HPLC. The use of a chiral stationary phase makes the interactions between the two enantiomers with the adsorbent nonidentical and thus establishes a different rate of elution through the column. The interactions typically include hydrogen bonding, dipolar interactions, and n-n interactions. These attractive interactions may be disturbed by steric repulsions, and frequently the basis of enantioselectivity is a better steric fit for one of the two enantiomers. ... [Pg.89]

Proteins. A chiral stationary phase with immobilized a -acid glycoprotein on silica beads was introduced by Hermansson in 1983 [18, 19]. Several other proteins such as chicken egg albumin (ovalbumin), human serum albumin, and cellohy-drolase were also used later for the preparation of commercial CSPs. Their selectivity is believed to occur as a result of excess of dispersive forces acting on the more retained enantiomer [17]. These separation media often exhibit only modest loading capacity. [Pg.58]

There is a wide variety of commercially available chiral stationary phases and mobile phase additives.32 34 Preparative scale separations have been performed on the gram scale.32 Many stationary phases are based on chiral polymers such as cellulose or methacrylate, proteins such as human serum albumin or acid glycoprotein, Pirkle-type phases (often based on amino acids), or cyclodextrins. A typical application of a Pirkle phase column was the use of a N-(3,5-dinitrobenzyl)-a-amino phosphonate to synthesize several functionalized chiral stationary phases to separate enantiomers of... [Pg.12]

Because plasma and urine are both aqueous matrixes, reverse-phase or polar organic mode enantiomeric separations are usually preferred as these approaches usually requires less elaborate sample preparation. Protein-, cyclodextrin-, and macrocyclic glycopeptide-based chiral stationary phases are the most commonly employed CSPs in the reverse phase mode. Also reverse phase and polar organic mode are more compatible mobile phases for mass spectrometers using electrospray ionization. Normal phase enantiomeric separations require more sample preparation (usually with at least one evaporation-to-dryness step). Therefore, normal phase CSPs are only used when a satisfactory enantiomeric separation cannot be obtained in reverse phase or polar organic mode. [Pg.328]

As yet, the number of applications is limited but is likely to grow as instrumentation, mostly based on existing CE systems, and columns are improved and the theory of CEC develops. Current examples include mixtures of polyaromatic hydrocarbons, peptides, proteins, DNA fragments, pharmaceuticals and dyes. Chiral separations are possible using chiral stationary phases or by the addition of cyclodextrins to the buffer (p. 179). In theory, the very high efficiencies attainable in CEC mean high peak capacities and therefore the possibility of separating complex mixtures of hundreds of... [Pg.648]

Chiral separations result from the formation of transient diastereomeric complexes between stationary phases, analytes, and mobile phases. Therefore, a column is the heart of chiral chromatography as in other forms of chromatography. Most chiral stationary phases designed for normal phase HPLC are also suitable for packed column SFC with the exception of protein-based chiral stationary phases. It was estimated that over 200 chiral stationary phases are commercially available [72]. Typical chiral stationary phases used in SFC include Pirkle-type, polysaccharide-based, inclusion-type, and cross-linked polymer-based phases. [Pg.221]

Analysis using a CMPA is usually resolved on a nonchiral column. A transient diastereomeric complex is formed between the enantiomer and the chiral component in the mobile phase, similar to the complexes formed with chiral stationary phases. A review by Liu and Liu (2002) cites several papers where addition of CPMAs has been used in analyzing amphetamine-related compounds. Some CPMAs include amino acid enantiomers, metal ions, proteins, and cyclodextrins. Advantages of this method of analysis include the use of less expensive columns and more flexibility in the optimization of chiral separation (Misl anova and Hutta, 2003). [Pg.25]

Haginaka J. 2001. Protein-based chiral stationary phases for high performance liquid chromatography enantiosepara-tions. J Chromatogr A 906 253-273. [Pg.37]

Armstrong et al. ° first introduced chiral stationary phases based on macrocyclic antibiotics. Vancomycin, ristocetin A, teicoplanin, avoparcin, rifamycin B and thiostrepton are used as chiral selectors. They posses a broad enantiorecognition range, similar to protein based CSPs. However, CSPs based on macrocyclic antibiotics show higher stability and capacities.Underivatized amino acids, N-derivatized amino-acids, acidic compounds, neutrals, amides, esters and amines can be separated.The first four of the above-mentioned chiral selectors appear to have the largest enantiorecognition range.The selectors can also be derivatized to obtain different enantioselectivities. [Pg.472]

Aubry, A.E., Markoglou, N., Descorps, V., Wainer, I.W. and felix, G. (1994) Evaluation of a chiral stationary phase based on mixed immobilized proteins. Journal of Chromatography. A, 685, 1-6. [Pg.217]

Proteins, amino acids bonded through peptide linkages to form macromolecular biopolymers, used as chiral stationary phases for hplc include bovine and human serum albumin, OL-acid glycoprotein, ovomucoid, avidin, and cellobiohydrolase. The bovine serum albumin column is marketed under the name Resolvosil and can be obtained from Phenomenex. The human serum albumin column can be obtained from Alltech Associates, Advanced Separation Technologies, Inc., and J. T. Baker. The a1-acid glycoprotein and cellobiohydrolase can be obtained from Advanced Separation Technologies, Inc. or J. T. Baker, Inc. [Pg.66]

In view of the importance of chiral resolution and the efficiency of liquid chromatographic methods, attempts are made to explain the art of chiral resolution by means of liquid chromatography. This book consists of an introduction followed by Chapters 2 to 8, which discuss resolution chiral stationary phases based on polysaccharides, cyclodextrins, macrocyclic glyco-peptide antibiotics, Pirkle types, proteins, ligand exchangers, and crown ethers. The applications of other miscellaneous types of CSP are covered in Chapter 9. However, the use of chiral mobile phase additives in the separation of enantiomers is discussed in Chapter 10. [Pg.31]

The most popular and commonly used chiral stationary phases (CSPs) are polysaccharides, cyclodextrins, macrocyclic glycopeptide antibiotics, Pirkle types, proteins, ligand exchangers, and crown ether based. The art of the chiral resolution on these CSPs has been discussed in detail in Chapters 2-8, respectively. Apart from these CSPs, the chiral resolutions of some racemic compounds have also been reported on other CSPs containing different chiral molecules and polymers. These other types of CSP are based on the use of chiral molecules such as alkaloids, amides, amines, acids, and synthetic polymers. These CSPs have proved to be very useful for the chiral resolutions due to some specific requirements. Moreover, the chiral resolution can be predicted on the CSPs obtained by the molecular imprinted techniques. The chiral resolution on these miscellaneous CSPs using liquid chromatography is discussed in this chapter. [Pg.315]

Balmer et al. [60] separated the two enantiomers of omeprazole on three different stationary phases with immobilized protein, viz, Chiral-AGP with a-1 acid glycoprotein, Ultron ES-OVM with ovomucoid, and BSA-DSC with BSA cross-linked into 3-aminopropyl silica using N-suc-cinimidyl carbonate. The mobile phase (1 ml/min) was phosphate buffer solution with 3—10% 2-propanol as the organic modifier. The enantiomers of omeprazole were separated on Chiralpak AD, an amylose-based chiral stationary phase, with ethanol-hexane (1 4) as mobile phase (1 ml/min). [Pg.215]

Persson and Andersson [65] reviewed the unusual effects in liquid chromatographic separations of enantiomers on chiral stationary phases with emphasis on polysaccharide phases. On protein phases and Pirkle phases, reversal of the elution order between enantiomers due to... [Pg.216]

The chiral recognition mechanisms in NLC and NCE devices are similar to conventional liquid chromatography and capillary electrophoresis with chiral mobile phase additives. It is important to note here that, to date, no chiral stationary phase has been developed in microfluidic devices. As discussed above polysaccharides, cyclodextrins, macrocyclic glycopeptide antibiotics, proteins, crown ethers, ligand exchangers, and Pirkle s type molecules are the most commonly used chiral selectors. These compounds... [Pg.260]

With chiral affinity phases, proteins undergo enantioselective interactions with a great variety of drugs. Thus, the resolution on chiral affinity stationary phases is due to interactions of the enantiomers with proteins bonded to the solid support. Typical proteins used for chiral affinity separa-... [Pg.59]

Chiral CEC will be discussed in detail later in the book but is included here to exemplify the application of the high efficiencies obtained with electro-driven techniques which makes them attractive for chiral analysis where selectivity factors are sometimes small. CE has made use of chiral additives in the electrolyte whilst LC tends to utilise chiral stationary phases. Both options have been explored for chiral CEC [27,28,77]. The small amount of packing material necessary for capillaries allows the use of chiral stationary phases that would be prohibitively expensive for standard LC. Cyclodextrins, proteins, antibiotics and molecular imprinting have all been used to form chiral stationary phases [78-80]. After some less than encouraging peak efficiencies obtained using the chiral CEC approach, much improved chiral resolutions have been achieved using CEC compared to LC or CE [81-83]. [Pg.113]

Silica-base stationary phases have also been employed for enantiomeric separations in CEC [6,72-81]. In the initial work on chiral CEC, commercially available HPLC materials were utilized, including cyclodextrins [6,74,81] and protein-type selectors [73,75,80] such as human serum albumin [75] and ai-acid glycoprotein [73]. Fig. 4.9, for example, depicts the structure of a cyclodextrin-base stationary phase used in CEC and the separation of mephobarbital enantiomers by capillary LC and CEC in a capillary column packed with such a phase. The column operated in the CEC mode affords higher separation efficiency than in the capillary LC mode. Other enantiomeric selectors are also use in CEC, including the silica-linked or silica-coated macrocyclic antibiotics vancomycin [82,83] and teicoplanin [84], cyclodextrin-base polymer coated silicas [72,78], and weak anion-exchage type chiral phases [85]. Relatively high separation efficiency and excellent resolution for a variety of compounds have also been achieved using columns packed with naproxen-derived and Whelk-0 chiral stationary phases linked to 3 pm silica particles [79]. Fig. 4.10 shows the... [Pg.133]


See other pages where Chiral stationary phases proteins is mentioned: [Pg.63]    [Pg.242]    [Pg.4]    [Pg.59]    [Pg.19]    [Pg.73]    [Pg.322]    [Pg.238]    [Pg.361]    [Pg.363]    [Pg.363]    [Pg.363]    [Pg.1267]    [Pg.63]    [Pg.66]    [Pg.66]    [Pg.13]    [Pg.190]    [Pg.223]    [Pg.228]    [Pg.352]    [Pg.246]    [Pg.46]    [Pg.273]    [Pg.47]   
See also in sourсe #XX -- [ Pg.167 ]

See also in sourсe #XX -- [ Pg.2159 ]

See also in sourсe #XX -- [ Pg.815 ]

See also in sourсe #XX -- [ Pg.1604 , Pg.1605 ]




SEARCH



Chiral phases

Chiral phases protein

Chiral stationary phases

Chirality/Chiral phases

Phases chirality

© 2024 chempedia.info