Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Gas phase affinity

Gas phase affinity of pyridines for Cl" was studied by multiple-stage mass spectroscopy <94JACS(116)2457). These values correlate well with known proton affinities, and decrease in Cl affinity for a-substituted pyridines was shown to be a steric effect, not an electronic one. [Pg.219]

The gas-phase affinities of primary, secondary and tertiary alkyl amines towards MesSi were determined in a high-pressure mass spectrometer. The MesSi affinities were found to increase linearly with the proton affinities of the amines. In these measurements trialkyl amines were found to undergo only very slow associations with MesSi ions, which was explained by steric effects. The proton affinities of trimethylsilylamines which have been measured in these studies demonstrated again that the ability of an a-silicon to stabilize a positive charge on nitrogen is somewhat smaller than that at a carbon atom. [Pg.1121]

It is possible to detemiine the equilibrium constant, K, for the bimolecular reaction involving gas-phase ions and neutral molecules in the ion source of a mass spectrometer [18]. These measurements have generally focused on tln-ee properties, proton affinity (or gas-phase basicity) [19, 20], gas-phase acidity [H] and solvation enthalpies (and free energies) [22, 23] ... [Pg.1343]

In an earlier section, measurements were described in which the equilibrium constant, K, for bimolecular reactions involving gas-phase ions and neutral molecules were detennined. Another method for detemiining the proton or other affinity of a molecule is the bracketing method [ ]. The principle of this approach is quite straightforward. Let us again take the case of a proton affinity detemiination as an example. In a reaction... [Pg.1358]

Szule]ko J E and McMahon T B 1993 Progress toward an absolute gas-phase proton affinity scale J. Am. Chem. Soc. 115 7839-48... [Pg.1359]

Much of tills chapter concerns ET reactions in solution. However, gas phase ET processes are well known too. See figure C3.2.1. The Tiarjioon mechanism by which halogens oxidize alkali metals is fundamentally an electron transfer reaction [2]. One might guess, from tliis simple reaction, some of tlie stmctural parameters tliat control ET rates relative electron affinities of reactants, reactant separation distance, bond lengtli changes upon oxidation/reduction, vibrational frequencies, etc. [Pg.2972]

Additional gas-phase reactivity data, such as gas-phase acidities of alcohols [41], proton affinities of alcohols and ethers [41], and proton affinities of carbonyl compounds [42] could equally well be described by similar equations. [Pg.335]

Fundamental enthalpies of gas-phase reactions such as proton affinities or gas-phase acidities can be correlated with the values of the Inductive and the polarizability effect. [Pg.398]

TABLE 4.4 Electron Affinities of Atoms, Molecules, and Radicals Electron affinity of an atom (molecule or radical) is defined as the energy difference between the lowest (ground) state of the neutral and the lowest state of the corresponding negative ion in the gas phase. A(g) + e = A-(g) Data are limited to those negative ions which, by virtue of their positive electron affinity, are stable. Uncertainty in the final data figures is given in parentheses. Calculated values are enclosed in brackets. ... [Pg.299]

Table 3 Gas Phase Proton Affinities of Small Heteroeyeles (sojASiSi)... Table 3 Gas Phase Proton Affinities of Small Heteroeyeles (sojASiSi)...
The proton affinities (gas phase) of thiirane and other three-membered heterocycles have been determined azirane (902.5), thiirane (819.2), phosphirane (815.0), oxirane (793.3 kJ moF ) (80JA5151). Increasing s character in the lone electron pairs decreases proton affinities. Data derived from NMR chemical shifts in chloroform indicate the order of decreasing basicity is azirane > oxirane > thiirane (73CR(B)(276)335). The base strengths of four-, five- and six-membered cyclic sulfides are greater than that of thiirane. [Pg.145]

Because these stability measurements pertain to the gas phase, it is important to consider the effects that solvation might have on the structure-stability relationships. Hydride affinity values based on solution measurements can be derived from thermodynamic cycles that relate hydrocarbon p T, bond dissociation energy and electrochemical potentials. The hydride affinity, AG, for the reaction... [Pg.279]

There is an excellent correlation between these data and the gas-phase data, in terms both of the stability order and the energy differences between carbocations. A plot of the gas-phase hydride affinity versus the ionization enthalpy gives a line of slope 1.63 with a correlation coefficient of 0.973. This result is in agreement with the expectation that the gas-phase stability would be somewhat more sensitive to structure than the solution-phase stability. The energy gap between tertiary and secondary ions is about 17kcal/mol in the gas phase and about 9.5 kcal/mole in the SO2CIF solution. [Pg.280]

These results, which pertain to stable-ion conditions, provide strong evidence that foe most stable structure for foe norbomyl cation is foe symmetrically bridged nonclassical ion. How much stabilization does foe a bridging provide An estimate based on molecular mechanics calculations and a foermodynamic cycle suggests a stabilization of about 6 1 kcal/mol. An experimental value based on mass-spectrometric measurements is 11 kcal/mol. Gas-phase Itydride affinity and chloride affinity data also show foe norbomyl cation to be especially stable. ... [Pg.330]

Other measures of nucleophilicity have been proposed. Brauman et al. studied Sn2 reactions in the gas phase and applied Marcus theory to obtain the intrinsic barriers of identity reactions. These quantities were interpreted as intrinsic nucleo-philicities. Streitwieser has shown that the reactivity of anionic nucleophiles toward methyl iodide in dimethylformamide (DMF) is correlated with the overall heat of reaction in the gas phase he concludes that bond strength and electron affinity are the important factors controlling nucleophilicity. The dominant role of the solvent in controlling nucleophilicity was shown by Parker, who found solvent effects on nucleophilic reactivity of many orders of magnitude. For example, most anions are more nucleophilic in DMF than in methanol by factors as large as 10, because they are less effectively shielded by solvation in the aprotic solvent. Liotta et al. have measured rates of substitution by anionic nucleophiles in acetonitrile solution containing a crown ether, which forms an inclusion complex with the cation (K ) of the nucleophile. These rates correlate with gas phase rates of the same nucleophiles, which, in this crown ether-acetonitrile system, are considered to be naked anions. The solvation of anionic nucleophiles is treated in Section 8.3. [Pg.360]

In considering the following isoelcctronic sequence (8 valence electrons) and the corresponding gas-phase proton affinities (An / kJ mor )3 >... [Pg.629]

This technique provides quantitative information about tautomeric equilibria in the gas phase. The results are often complementary to those obtained by mass spectrometry (Section VII,E). In principle, gas-phase proton affinities, as determined by ICR, should provide quantitative data on tautomeric equilibria. The problem is the need to correct the measured values for the model compounds, generally methyl derivatives, by the so-called N-, 0-, or S-methylation effect. Since the difference in stability between tautomers is generally not too large (otherwise determination of the most stable tautomer is trivial) and since the methylation effects are difficult to calculate, the result is that proton affinity measurements allow only semi-quantitative estimates of individual tautomer stabilities. This is a problem similar to but more severe than that encountered in the method using solution basicities (76AHCS1, p. 20). [Pg.52]

Katritzky and Taft were the first to use ICR proton affinities for tautomeric studies (76JA6048). This and work of Katritzky and Nibbering (77TL1777) discuss the tautomerism of pyridones and thiopyridones and conclude that ICR results are in agreement with previous studies of Beak (76JA171)—that in the gas phase the OH and SH tautomers predominate. The complicated case of 2-thiouracil (six aromatic tautomers) was studied by Katritzky and Eyler [89JCS(P2)1499] they conclude that the oxothioxo tautomer is the most stable. [Pg.52]

An updated compilation of gas-phase basicities and proton affinities has been published (98MI3). [Pg.95]

MO studies (AMI and AMI-SMI) on the tautomerism and protonation of 2-thiopurine have been reported [95THE(334)223]. Heats of formation and relative energies have been calculated for the nine tautomeric forms in the gas phase. Tire proton affinities were determined for the most stable tautomers 8a-8d. Tire pyrimidine ring in the thiones 8a and 8b has shown a greater proton affinity in comparison with the imidazole ring, or with the other tautomers. In solution, the thione tautomers are claimed to be more stabilized by solvent effects than the thiol forms, and the 3H,1H tautomer 8b is the most stable. So far, no additional experimental data or ab initio calculations have been reported to confirm these conclusions. [Pg.58]

Gas-phase basity and proton affinity values for 3,4,6,7,8,9-hexahydro-2/f-pyrido[l,2-n]pyrimidine were determined and they were compared to other super bases, including its lower and higher piperidine ring homologs (94JP0725, 01JPO25). [Pg.195]


See other pages where Gas phase affinity is mentioned: [Pg.123]    [Pg.610]    [Pg.1121]    [Pg.25]    [Pg.195]    [Pg.87]    [Pg.161]    [Pg.398]    [Pg.610]    [Pg.325]    [Pg.1544]    [Pg.519]    [Pg.123]    [Pg.610]    [Pg.1121]    [Pg.25]    [Pg.195]    [Pg.87]    [Pg.161]    [Pg.398]    [Pg.610]    [Pg.325]    [Pg.1544]    [Pg.519]    [Pg.813]    [Pg.50]    [Pg.248]    [Pg.25]    [Pg.25]    [Pg.175]    [Pg.23]    [Pg.844]    [Pg.257]    [Pg.429]    [Pg.278]    [Pg.282]    [Pg.289]    [Pg.57]    [Pg.60]   
See also in sourсe #XX -- [ Pg.123 , Pg.160 ]




SEARCH



Determination of Gas Phase Basicities and Proton Affinities

Gas Phase Acidities and Electron Affinities of the Amino Acids

Gas Phase Basicities and Proton Affinities

Gas Phase Basicity and Proton Affinity

Gas Phase Measurements of Electron Affinities

Gas-phase electron affinities

Gas-phase hydride affinity

Gas-phase proton affinities

Scales of Bronsted Basicity and Affinity in the Gas Phase

© 2024 chempedia.info