Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical sensors redox electrodes

There are three types of reference electrodes discussed reference electrodes of the first kind, reference electrodes of the second kind, and redox reference electrodes. The first two are used with potentiometric chemical sensors, whereas the last one helps us to get around the difficult problem of comparing potentials in different solvents. There is also a pseudo-reference electrode that does not have a stable, defined, reproducible potential. It serves only as the signal return to satisfy the condition of closing the electrical circuit (see Section 5.2). Because the liquid junction always causes some leakage of the internal solution, electrodes of the first kind are particularly affected. [Pg.132]

Heated electrodes are useful as chemical sensors, preferably in bioanalytical applications like DNA hybridization analysis. Other applications are kinetic studies using the temperature pulse method, and determination of physicochemical constants like redox entropy, etc. [Pg.326]

The ion sensitive field-effect transistor (ISFET) is a special member of the family of potentiometric chemical sensors [6,7. Like the other members of this family, it transduces information from the chemical into the electrical domain. Unlike the common potentiometric sensors, however, the principle of operation of the ISFET cannot be listed on the usual table of operation principles of potentiometric sensors. These principles, e.g., the determination of the redox potential at an inert electrode, or of the electrode potential of an electrode immersed in a solution of its own ions (electrode of the first kind), all have in common that a galvanic contact exists between the electrode and the solution, allowing a faradaic current to flow, even when this is only a very small measuring current. [Pg.376]

Ge. Y. Smith, D.K. Development of chemical sensors 126. based on redox-dependent receptors. Preparation and characterization of phenanthrenequiiione-modified electrodes. Anal. Chern. 2000. 72. 1860- 1865. [Pg.519]

A new type of (bio)chemical sensor, the redox-sensitive field-effect transistor is described It consists of a conventional ISFET with a noble metal added on top of the gate insulator The gate electrode is modified with a redox polymer containing osmium complexes The potentiostatic multi-puls method is introduced which allows the adjustment of the redox potential of the gate to a desired value in a stepwise way It is shown that the open circuit potential after switching off the potentiostat is a good measurement of the presence of the redox active species NADH... [Pg.267]

In principle the ISO-NOP sensor works as follows. The sensor is immersed in a solution containing NO and a positive potential of —860 mV (vs Ag/AgCl reference electrode) is applied. NO diffuses across the gas permeable/NO-selective membrane and is oxidized at the working electrode surface producing a redox current. This oxidation proceeds via an electrochemical reaction followed by a chemical reaction. The electrochemical reaction is a one-electron transfer from the NO molecule to the electrode, resulting in the formation of the nitrosonium cation ... [Pg.28]

Attaching the catalyst molecules to the electrode surface presents an obvious advantage for synthetic and sensor applications. Catalysis can then be viewed as a supported molecular catalysis. It is the object of the next section. A distinction is made between monolayer and multilayer coatings. In the former, only chemical catalysis may take place, whereas both types of catalysis are possible with multilayer coatings, thanks to their three-dimensional structure. Besides substrate transport in the bathing solution, the catalytic responses are then under the control of three main phenomena electron hopping conduction, substrate diffusion, and catalytic reaction. While several systems have been described in which electron transport and catalysis are carried out by the same redox centers, particularly interesting systems are those in which these two functions are completed by two different molecular systems. [Pg.252]

Redox-based biosensors. Noble metals (platinum and gold) and carbon electrodes may be functionalized by oxidation procedures leaving oxidized surfaces. In fact, the potentiometric response of solid electrodes is strongly determined by the surface state [147]. Various enzymes have been attached (whether physically or chemically) to these pretreated electrodes and the biocatalytic reaction that takes place at the sensor tip may create potential shifts proportional to the amount of reactant present. Some products of the enzyme reaction that may alter the redox state of the surface e.g. hydrogen peroxide and protons) are suspected to play a major role in the observed potential shifts [147]. [Pg.131]

While the variety of NPs used in catalytic and sensor applications is extensive, this chapter will primarily focus on metallic and semiconductor NPs. The term functional nanoparticle will refer to a nanoparticle that interacts with a complementary molecule and facilitate an electrochemical process, integrating supramolecular and redox function. The chapter will first concentrate on the role of exo-active surfaces and core-based materials within sensor applications. Exo-active surfaces will be evaluated based upon their types of molecular receptors, ability to incorporate multiple chemical functionalities, selectivity toward distinct analytes, versatility as nanoscale receptors, and ability to modify electrodes via nanocomposite assemblies. Core-based materials will focus on electrochemical labeling and tagging methods for biosensor applications, as well as biological processes that generate an electrochemical response at their core. Finally, this chapter will shift its focus toward the catalytic nature of NPs, discussing electrochemical reactions and enhancement in electron transfer. [Pg.303]

It is important to note that the electrode potential is related to activity and not to concentration. This is because the partitioning equilibria are governed by the chemical (or electrochemical) potentials, which must be expressed in activities. The multiplier in front of the logarithmic term is known as the Nernst slope . At 25°C it has a value of 59.16mV/z/. Why did we switch from n to z when deriving the Nernst equation in thermodynamic terms Symbol n is typically used for the number of electrons, that is, for redox reactions, whereas symbol z describes the number of charges per ion. Symbol z is more appropriate when we talk about transfer of any charged species, especially ions across the interface, such as in ion-selective potentiometric sensors. For example, consider the redox reaction Fe3+ + e = Fe2+ at the Pt electrode. Here, the n = 1. However, if the ferric ion is transferred to the ion-selective membrane, z = 3 for the ferrous ion, z = 2. [Pg.122]

Voltammetric sensors Here, detection is based on the redox behaviour of the analyte on the electrode. However, when the analyte is bound to suspended particles or present in complexes that are chemically inert, direct determination is generally not possible. Therefore, voltammetric sensors provide information on the species that are chemically available (labile). Uniquely, these sensors typically involve a necessary preconcentration step in which the analyte is usually reduced and accumulated for a certain time at the electrode. This process is followed by its oxidation and stripping from the electrode. Whole family of methods has emerged based on the different potential-current profiles for the stripping step, all having common name Stripping Analysis (SA). [Pg.27]

Developers of thick-film sensors have removed the interference from the sample by chemical oxidation [12,13], by-passed it by selection of applied potentials and electrode materials, including the use of redox mediators [14,15], and kept it from electrode surfaces by inner and outer membranes [16-19]. [Pg.670]


See other pages where Chemical sensors redox electrodes is mentioned: [Pg.299]    [Pg.522]    [Pg.539]    [Pg.929]    [Pg.539]    [Pg.520]    [Pg.161]    [Pg.314]    [Pg.320]    [Pg.418]    [Pg.503]    [Pg.75]    [Pg.4018]    [Pg.6066]    [Pg.1035]    [Pg.302]    [Pg.121]    [Pg.189]    [Pg.335]    [Pg.329]    [Pg.969]    [Pg.115]    [Pg.378]    [Pg.3]    [Pg.53]    [Pg.193]    [Pg.350]    [Pg.379]    [Pg.488]    [Pg.529]    [Pg.2]    [Pg.298]    [Pg.182]    [Pg.302]    [Pg.359]    [Pg.27]    [Pg.259]    [Pg.119]   
See also in sourсe #XX -- [ Pg.94 ]




SEARCH



Chemical redox

Electrode redox electrodes

Electrodes sensors, chemically

Redox electrodes

Redox sensor

Sensor electrode

Sensors, chemical

© 2024 chempedia.info