Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical methods: their limits

Comments on physical and chemical methods their limits... [Pg.243]

If the reader has actually made it up to this point, he or she will have the impression that the whole universe of solid-state materials, i.e., insulators, semiconductors, metals, and intermetallic compounds can nowadays be studied by electronic-structure theory, and predictive conclusions are really in our own hands. Indeed, the numerical limitations of most classical approaches - in particular, the ionic model of everything - have been overcome. While the computational methods of today include very different quantum-chemical methods, their varying levels of accuracy and speed are due to differences in their atomic potentials and the choice of the basis sets that are involved. The latter may either be totally delocalized (plane waves) or localized (atomic-like), adapted to the valence electrons only (pseudopotentials) or to all the electrons. In order to understand structures and compositions of solid-state materials, the results of electronic-structure theory are typically investigated in terms of some quantum-chemical analysis. [Pg.265]

Acetylation of hydroxyl groups and esterification of carboxyl groups have been observed ia a limited number of cases but, ia geaeral, have ao preparative advantage over chemical methods. By comparison, phosphorylation has been useful ia the preparatioa of modified purine and pyrimidine mononucleotides from their corresponding nucleosides, eg, 6-thioguanosiae [85-31-4] (51) (97). [Pg.314]

A2 - Suspected human carcinogens. Chemical substances, or substances associated with industrial process, which are suspect of inducing cancer, based on their limited epidemiological evidence or demonstration of carcinogenesis in one or more animal species by appropriate methods. [Pg.177]

Shimizu and Ohtsu [69] have proposed a chemical method to determine head-to-head structures in PVC. Mitani et al. [70] found 2.5-7.0 head-to-head structures per 1,000 monomer units, increasing with the polymerization temperature. It has not been possible to detect internal head-to-head structure by C-NMR spectroscopy with the detection limit of 2 per 1,000 monomer units [71]. Starnes et al. [71] found evidence for the absence of neighboring methylene groups by C-NMR spectroscopy. However, the proposed reaiTangement of head-to-head units at the radical chain ends resulting in chloromethyl branches [Eq. (6)] would partially explain their consumption during polymerization and their absence in the final product. [Pg.324]

Standards imposed to the industrial waste streams charged in heavy metals are more and more drastic in accordance with the updated knowledges of the toxicity of mercury, cadmium, lead, chromium... when they enter the human food chain after accumulating in plants and animals (Forster Wittmann, 1983). Nowadays, the use of biosorbents (Volesky, 1990) is more and more considered to complete conventional (physical and chemical) methods of removal that have shown their limits and/or are prohibitively expensive for metal concentrations typically below 100 mg.l-i. [Pg.535]

Hpp describes the primary system by a quantum-chemical method. The choice is dictated by the system size and the purpose of the calculation. Two approaches of using a finite computer budget are found If an expensive ab-initio or density functional method is used the number of configurations that can be afforded is limited. Hence, the computationally intensive Hamiltonians are mostly used in geometry optimization (molecular mechanics) problems (see, e. g., [66]). The second approach is to use cheaper and less accurate semi-empirical methods. This is the only choice when many conformations are to be evaluated, i. e., when molecular dynamics or Monte Carlo calculations with meaningful statistical sampling are to be performed. The drawback of semi-empirical methods is that they may be inaccurate to the extent that they produce qualitatively incorrect results, so that their applicability to a given problem has to be established first [67]. [Pg.55]

Bases stacked rather than hydrogen bonded have also been studied with quantum chemical methods [182, 244-247]. The nature of excited states in these systems has been debated and theoretical calculations are called to decide on the degree of excited state localization or delocalization, as well as the presence and energy of charge transfer states. The experimentally observed hypochromism of DNA compared to its individual bases has been known for decades [248], Accurate quantum chemical calculations are limited in these systems because of their increased size. Many of the reported studies have used TDDFT to calculate excited states of bases stacked with other bases [182, 244, 246, 247], However, one has to be cautious when us-... [Pg.324]

In principle, in both slow and fast exchange limits, the analysis of the ligand-protein interaction could be performed by a direct integration of the two well-separated resonances of free and bound ligand and by the analysis of their chemical shift. However, these methods are limited by the broadness of the protein-ligand NMR spectra, and numerical values of association constants are barely obtainable. [Pg.196]

Quantum chemical methods are well established, accepted and of high potential for investigation of inorganic reaction mechanisms, especially if they can be applied as a fruitful interplay between theory and experiment. In the case of solvent exchange reactions their major deficiency is the limited possibility of including solvent effects. We demonstrated that with recent DFT-and ab initio methods, reaction mechanisms can be successfully explored. To obtain an idea about solvent effects, implicit solvent models can be used in the calculations, when their limitations are kept in mind. In future, more powerful computers will be available and will allow more sophisticated calculations to be performed. This will enable scientists to treat solvent molecules explicitly by ab initio molecular dynamics (e.g., Car-Parrinello simulations). The application of such methods will in turn complement the quantum chemical toolbox for the exploration of solvent and ligand exchange reactions. [Pg.564]

The identification of unknown chemical compounds isolated in inert gas matrices is nowadays facilitated by comparison of the measured IR spectra with those computed at reliable levels of ab initio or density functional theory (DFT). Furthermore, the observed reactivity of matrix isolated species can in some instances be explained with the help of computed reaction energies and barriers for intramolecular rearrangements. Hence, electronic structure methods developed into a useful tool for the matrix isolation community. In this chapter, we will give an overview of the various theoretical methods and their limitations when employed in carbene chemistry. For a more detailed qualitative description of the merits and drawbacks of commonly used electronic structure methods, especially for open-shell systems, the reader is referred to the introductory guide of Bally and Borden.29... [Pg.162]

Although even the smaller structural units of zeolites are large enough to tax the most advanced quantum chemical computational methods to their limits, nevertheless, it is now possible to determine the fundamental electronic properties of zeolite structural units. In addition to their unique geometrical (in fact, topological) properties, the electronic structure and charge distribution of zeolites are of fundamental importance in explaining their catalytic and other chemical properties. [Pg.147]

The simplest closure for the chemical source term is to assume that the joint composition PDF can be represented by its moments. In general, this assumption is of limited validity. Nevertheless, in this section we review methods based on moment closures in order to illustrate their limitations. [Pg.172]

Part—I has three chapters that exclusively deal with General Aspects of pharmaceutical analysis. Chapter 1 focuses on the pharmaceutical chemicals and their respective purity and management. Critical information with regard to description of the finished product, sampling procedures, bioavailability, identification tests, physical constants and miscellaneous characteristics, such as ash values, loss on drying, clarity and color of solution, specific tests, limit tests of metallic and non-metallic impurities, limits of moisture content, volatile and non-volatile matter and lastly residue on ignition have also been dealt with. Each section provides adequate procedural details supported by ample typical examples from the Official Compendia. Chapter 2 embraces the theory and technique of quantitative analysis with specific emphasis on volumetric analysis, volumetric apparatus, their specifications, standardization and utility. It also includes biomedical analytical chemistry, colorimetric assays, theory and assay of biochemicals, such as urea, bilirubin, cholesterol and enzymatic assays, such as alkaline phosphatase, lactate dehydrogenase, salient features of radioimmunoassay and automated methods of chemical analysis. Chapter 3 provides special emphasis on errors in pharmaceutical analysis and their statistical validation. The first aspect is related to errors in pharmaceutical analysis and embodies classification of errors, accuracy, precision and makes... [Pg.539]

Abstract In recent years NMR methods have been developed that enable the observation of proteins inside living bacterial cells. Because of the sensitivity of the chemical shift to environmental changes these in-ceU NMR experiments can be used to study protein conformation, molecular interaction or dynamics in a protein s natmal surrounding. Detection of proteins in the bacterial cytoplasm relies on labeling of the protein of interest with NMR active isotopes. This review describes different labeling techniques based on either imiform i5n or labeling as well as amino acid specific labeling schemes. In addition potential applications of these in-cell NMR experiments and their limitations are discussed. [Pg.203]

At the time of this writing, it must be conceded that there have been no fundamental principles-based mathematical model for Nafion that has predicted significantly new phenomena or caused property improvements in a significant way. Models that capture the essence of percolation behavior ignore chemical identity. The more ab initio methods that do embrace chemical structure are limited by the number of molecular fragments that the computer can accommodate. Other models are semiempirical in nature, which limits their predictive flexibility. Nonetheless, the diversity of these interesting approaches offers structural perspectives that can serve as guides toward further experimental inquiry. [Pg.342]


See other pages where Chemical methods: their limits is mentioned: [Pg.11]    [Pg.34]    [Pg.133]    [Pg.838]    [Pg.2811]    [Pg.540]    [Pg.52]    [Pg.120]    [Pg.52]    [Pg.265]    [Pg.461]    [Pg.212]    [Pg.93]    [Pg.119]    [Pg.86]    [Pg.225]    [Pg.428]    [Pg.78]    [Pg.594]    [Pg.171]    [Pg.148]    [Pg.7]    [Pg.148]    [Pg.239]    [Pg.427]    [Pg.324]    [Pg.17]    [Pg.42]    [Pg.247]    [Pg.80]    [Pg.16]    [Pg.302]    [Pg.41]   


SEARCH



Limit method

Method limitations

© 2024 chempedia.info