Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical kinetics compared with

This comparative study in a family of complex reactions illustrates the levels of complexity of the field of chemical kinetics. Even with such homologous species, minor differences in activation energies may modify drastically the reaction mechanisms of the reacting systems. Simple models, such as the ISM, that provide estimates of 3 from structural and electronic parameters, help to rationahse such complex kinetic behaviour. [Pg.305]

In most apphcations to chemical processes, the kinetic- and potential-energy terms are negligible compared with the others in this event Eq. (4-359) is written... [Pg.545]

The theory has been advanced that the rapid growth of marine fouling in the tropics may provide a protective shield which counteracts the effect of the greater activity of the hotter water, and LaQue" has pointed out that in flowing sea water, when no fouling organisms became attached to small fully immersed specimens, corrosion of steel at 11° C proceeded at 0-18 mm/y compared with 0-36 mm/y at 21° C. This increase corresponds with what would be expected from chemical kinetics, where the rate of reaction is approximately doubled for a rise of 10° C. [Pg.370]

When comparing Eq. (67) with the empirical Arrhenius equation for chemical kinetics... [Pg.110]

The kinetic principles operating during the initiation and advance of interface-controlled reactions are identical with the behaviour discussed for the decomposition of a single solid (Chaps. 3 and 4). The condition that overall rate control is determined by an interface process is that a chemical step within this zone is slow compared with the rate of arrival of the second reactant. This condition is not usually satisfied during reaction between solids where the product is formed at the contact of a barrier layer with a reactant. Particular systems that satisfy the specialized requirements can, however, be envisaged for example, rate processes in which all products are volatilized or a solid additive catalyzes the decomposition of a solid yielding no solid residue. Even here, however, the kinetic characteristics are likely to be influenced by changing effectiveness of contact as reaction proceeds, or the deactivation of the catalyst surface. [Pg.256]

Chemical vapor deposition (CVD) of carbon from propane is the main reaction in the fabrication of the C/C composites [1,2] and the C-SiC functionally graded material [3,4,5]. The carbon deposition rate from propane is high compared with those from other aliphatic hydrocarbons [4]. Propane is rapidly decomposed in the gas phase and various hydrocarbons are formed independently of the film growth in the CVD reactor. The propane concentration distribution is determined by the gas-phase kinetics. The gas-phase reaction model, in addition to the film growth reaction model, is required for the numerical simulation of the CVD reactor for designing and controlling purposes. Therefore, a compact gas-phase reaction model is preferred. The authors proposed the procedure to reduce an elementary reaction model consisting of hundreds of reactions to a compact model objectively [6]. In this study, the procedure is applied to propane pyrolysis for carbon CVD and a compact gas-phase reaction model is built by the proposed procedure and the kinetic parameters are determined from the experimental results. [Pg.217]

Fhosphoric acid does not have all the properties of an ideal fuel cell electrolyte. Because it is chemically stable, relatively nonvolatile at temperatures above 200 C, and rejects carbon dioxide, it is useful in electric utility fuel cell power plants that use fuel cell waste heat to raise steam for reforming natural gas and liquid fuels. Although phosphoric acid is the only common acid combining the above properties, it does exhibit a deleterious effect on air electrode kinetics when compared with other electrolytes ( ) including such materials as sulfuric and perchloric acids, whose chemical instability at T > 120 C render them unsuitable for utility fuel cell use. In the second part of this paper, we will review progress towards the development of new acid electrolytes for fuel cells. [Pg.576]

The spatio-temporal variations of the concentration field in turbulent mixing processes are associated wdth very different conditions for chemical reactions in different parts of a reactor. This scenario usually has a detrimental effect on the selectivity of reactions when the reaction time-scale is small compared with the mixing time-scale. Under the same conditions (slow mixing), the process times are increased considerably. Due to mass transfer inhibitions, the true kinetics of a reaction does not show up instead, the mixing determines the time-scale of a process. This effect is known as mixing masking of reactions [126]. [Pg.47]

Since the integral is over time t, the resulting transform no longer depends on t, but instead is a function of the variable s which is introduced in the operand. Hence, the Laplace transform maps the function X(f) from the time domain into the s-domain. For this reason we will use the symbol when referring to Lap X t). To some extent, the variable s can be compared with the one which appears in the Fourier transform of periodic functions of time t (Section 40.3). While the Fourier domain can be associated with frequency, there is no obvious physical analogy for the Laplace domain. The Laplace transform plays an important role in the study of linear systems that often arise in mechanical, electrical and chemical kinetic systems. In particular, their interest lies in the transformation of linear differential equations with respect to time t into equations that only involve simple functions of s, such as polynomials, rational functions, etc. The latter are solved easily and the results can be transformed back to the original time domain. [Pg.478]

This closure property is also inherent to a set of differential equations for arbitrary sequences Uk in macromolecules of linear copolymers as well as for analogous fragments in branched polymers. Hence, in principle, the kinetic method enables the determination of statistical characteristics of the chemical structure of noncyclic polymers, provided the Flory principle holds for all the chemical reactions involved in their synthesis. It is essential here that the Flory principle is meant not in its original version but in the extended one [2]. Hence under mathematical modeling the employment of the kinetic models of macro-molecular reactions where the violation of ideality is connected only with the short-range effects will not create new fundamental problems as compared with ideal models. [Pg.173]

In chemical processes, the kinetic and potential energy terms are usually small compared with the heat and work terms, and can normally be neglected. [Pg.63]

Techniques for attaching such ruthenium electrocatalysts to the electrode surface, and thereby realizing some of the advantages of the modified electrode devices, have been developed.512-521 The electrocatalytic activity of these films have been evaluated and some preparative scale experiments performed. The modified electrodes are active and selective catalysts for oxidation of alcohols.5 6-521 However, the kinetics of the catalysis is markedly slower with films compared to bulk solution. This is a consequence of the slowness of the access to highest oxidation states of the complex and of the chemical reactions coupled with the electron transfer in films. In compensation, the stability of catalysts is dramatically improved in films, especially with complexes sensitive to bpy ligand loss like [Ru(bpy)2(0)2]2 + 51, 519 521... [Pg.499]

Since the discovery of alkylation, the elucidation of its mechanism has attracted great interest. The early findings are associated with Schmerling (17-19), who successfully applied a carbenium ion mechanism with a set of consecutive and simultaneous reaction steps to describe the observed reaction kinetics. Later, most of the mechanistic information about sulfuric acid-catalyzed processes was provided by Albright. Much less information is available about hydrofluoric acid as catalyst. In the following, a consolidated view of the alkylation mechanism is presented. Similarities and dissimilarities between zeolites as representatives of solid acid alkylation catalysts and HF and H2S04 as liquid catalysts are highlighted. Experimental results are compared with quantum-chemical calculations of the individual reaction steps in various media. [Pg.256]

As suggested before, the role of the interphasial double layer is insignificant in many transport processes that are involved with the supply of components from the bulk of the medium towards the biosurface. The thickness of the electric double layer is so small compared with that of the diffusion layer 8 that the very local deformation of the concentration profiles does not really alter the flux. Hence, in most analyses of diffusive mass transport one does not find any electric double layer terms. For the kinetics of the interphasial processes, this is completely different. Rate constants for chemical reactions or permeation steps are usually heavily dependent on the local conditions. Like in electrochemical processes, two elements are of great importance the local electric field which affects rates of transfer of charged species (the actual potential comes into play in the case of redox reactions), and the local activities... [Pg.121]

Historically, some of those approaches have been developed with a considerable degree of independence, leading to a proliferation of thermochemical concepts and conventions that may be difficult to grasp. Moreover, the past decades have witnessed the development of new experimental methods, in solution and in the gas phase, that have allowed the thermochemical study of neutral and ionic molecular species not amenable to the classic calorimetric and noncalorimetric techniques. Thus, even the expert reader (e.g., someone who works on thermochemistry or chemical kinetics) is often challenged by the variety of new and sophisticated methods that have enriched the literature. For example, it is not uncommon for a calorimetrist to have no idea about the reliability of mass spectrometry data quoted from a paper many gas-phase kineticists ignore the impact that photoacoustic calorimetry results may have in their own field most experimentalists are notoriously unaware of the importance of computational chemistry computational chemists often compare their results with less reliable experimental values and the consistency of thermochemical data is a frequently ignored issue and responsible for many inaccuracies in literature values. [Pg.302]

As discussed in an earlier section, <5L is the characteristic length of the flame and includes the thermal preheat region and that associated with the zone of rapid chemical reaction. This reaction zone is the rapid heat release flame segment at the high-temperature end of the flame. The earlier discussion of flame structure from detailed chemical kinetic mechanisms revealed that the heat release zone need not be narrow compared to the preheat zone. Nevertheless, the magnitude of <5L does not change, no matter what the analysis of the flame structure is. It is then possible to specify the characteristic time of the chemical reaction in this context to be... [Pg.221]

NIST Chemical Kinetics Database, Mallard, N. G Westley, F Herron, J. T Hampson, R. F. and Frizzell, D. H. NIST, NIST Standard Reference Data, Gaithersburg, MD, 1993. A computer program for IBM PC and compatibles for reviewing kinetic data by reactant, product, author, and citation searches and for comparing existing data with newly evaluated data. [Pg.748]

CHEMClean and CHEMDiffs The Comparison of Detailed Chemical Kinetic Mechanisms Application to the Combustion of Methane, Rolland, S. and Simmie, J. M. Int. J. Chem. Kinet. 36(9), 467 471, (2004). These programs may be used with CHEMKIN to (1) clean up an input mechanism file and (2) to compare two clean mechanisms. Refer to the website http //www. nuigalway.ie/chem/c3/software.htm for more information. [Pg.750]

Experimental determination of Ay for a reaction requires the rate constant k to be determined at different pressures, k is obtained as a fit parameter by the reproduction of the experimental kinetic data with a suitable model. The data are the concentration of the reactants or of the products, or any other coordinate representing their concentration, as a function of time. The choice of a kinetic model for a solid-state chemical reaction is not trivial because many steps, having comparable rates, may be involved in making the kinetic law the superposition of the kinetics of all the different, and often unknown, processes. The evolution of the reaction should be analyzed considering all the fundamental aspects of condensed phase reactions and, in particular, beside the strictly chemical transformations, also the diffusion (transport of matter to and from the reaction center) and the nucleation processes. [Pg.153]


See other pages where Chemical kinetics compared with is mentioned: [Pg.203]    [Pg.53]    [Pg.1773]    [Pg.87]    [Pg.1767]    [Pg.704]    [Pg.36]    [Pg.1605]    [Pg.2115]    [Pg.2838]    [Pg.511]    [Pg.242]    [Pg.4]    [Pg.250]    [Pg.102]    [Pg.220]    [Pg.81]    [Pg.524]    [Pg.186]    [Pg.354]    [Pg.438]    [Pg.1]    [Pg.423]    [Pg.70]    [Pg.244]    [Pg.20]    [Pg.464]    [Pg.424]    [Pg.725]    [Pg.460]    [Pg.401]    [Pg.285]   


SEARCH



Chemical Comparability

Chemical kinetics

Kinetic Chemicals

© 2024 chempedia.info