Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical analysis definition

When a bead of a gel-type CFP material is in the dry state, for practical purposes it can be considered as a solid material (thus possessing a mass, a volume and a shape). When in the swollen state, a CFP material can be still considered as a solid from the practical point of view, but this circumstance is now an authentic approximation. In fact, physico-chemical analysis reveals that under some circumstances this alleged solid material is rather a very viscous liquid. More precisely, it is a suspension of interconnected polymer chains in the swelling agent. Each swollen CFP bead can be considered as a drop, which can retain a definite shape owing to the existence of the polymer framework. [Pg.202]

Much of the early work with certified reference materials was linked to the derivation of reference methods and there was a period in which primary or definitive (i.e. very accurate but usually very complex) and secondary (or usable) methods were reported e.g. steroid hormones (Siekmann 1979), creatinine (Siekmann 1985), urea (Welch et al. 1984) and nickel (Brown et al. 1981). Although there are some application areas, such as checking the concentrations of preparations listed in a pharmacopoeia, where a prescribed, defined method has to be used, in practice such work is limited. However, this approach to chemical analysis is no longer widely used and will not be further discussed. The emphasis now is placed on using RMs to demonstrate that a method in use meets analytical criteria or targets deemed to be appropriate for the application and to develop figures of merit (Delves 1984). [Pg.112]

A sample of hops which had been treated with tetraethyl pyrophosphate showed a negative chemical analysis. The plant material was also extracted and the extract added to the drinking water of test animals and sensitive insects. The animals and insects that drank this treated water for several days showed no reaction. With the sensitive insects it would have been possible to detect even a few parts per million. In addition, there have been extensive commercial field applications of the chemical in dust and spray form to crops such as apples, pears, grapes, celery, broccoli, Brussels sprouts, and others up to within a few days of harvest there has been no detectable poison residue on any of the crops. The lack of poison residue with use of tetraethyl pyrophosphate is due to the fact that it hydrolyzes within a few hours of application, breaking down into transient nonresidual and nonpoisonous chemicals. Thus it is possible to use tetraethyl pyrophosphate well up to harvest time of food products without danger of residual poison on crops. The fact that the chemical is used in extremely small amounts is a definite advantage in respect to freedom from poison residue. [Pg.107]

Another definition of the term chemical analysis is also worth mentioning. The dictionary definition as found in Vogel s Textbook of Quantitative Inorganic Analysis says that chemical analysis is The resolution of a chemical compound into its proximate or ultimate parts the determination of its elements or of the foreign substances it may contain . [Pg.516]

From ancient times, humans have pondered what the universe is made of Early philosophers proposed fire, earth, water, and air either individually or in combination as the building blocks of nature. Lavoisier defined an element operationally as a substance that cannot be broken down chemically. Using this definition, the number of elements has increased from around 30 in Lavoisier s time to over 115 today. The initial search for elements involved classical methods such as replacement reactions, electrochemical separation, and chemical analysis. New methods such as spectroscopy greatly advanced the discovery of new elements during the twentieth century. The last half century has been marked by the synthesis of elements by humans. [Pg.69]

Key words in the definition are optimal and material systems . These express the fact that chemical analysis is related to a problem and not to a sample and that economical aspects of chemical analysis prevail. The result of chemometric research is chemometric software, which enable a large scale implementation and application of chemometric tools in practical chemical analysis. [Pg.7]

Gravimetric Analysis, Inorgonic. That branch of quantitative chemical analysis.in which a desired constituent is converted (usually by precipitation) to a pure compd or element of definite, known compn, and is weighed. In a few cases, a compd or element is formed which does not contain the constituent but bears a definite mathematical relationship to it. In either case, the amount of the desired constituent can be detd from the weight and compn of the precipitate. Methods exist for the detn of all the elements by gravimetric analysis... [Pg.774]

The literature gives a wide range of practical guidelines for the evaluation of method performance characteristics [58]. Besides the diversity of approaches, also the terminology and way of reporting results vary widely. Differences may occur depending on the purpose and the application field of the method, and validation studies may become more difficult as the complexity of the analysis increases [86]. In what follows, terms and formulas are taken from the accepted IUPAC nomenclature for the presentation of results of chemical analysis [66]. For each validation parameter, definitions, ways of expression, determination guidehnes, and acceptance criteria are reported in Table 5. [Pg.762]

Core electron spectroscopy for chemical analysis (ESCA) is perhaps the most definitive technique applied to the differentiation between nonclassical carbocations from equilibrating classical species. The time scale of the measured ionization process is of the order of 10 16 s so that definite species are characterized, regardless of (much slower) intra- and intermolecular exchange reactions—for example, hydride shifts, Wagner-Meerwein rearrangements, proton exchange, and so on. [Pg.92]

It was further found by Van Eijk van Voorthuysen and Franzen ( ) that the SiOa-content and the occurrence of the hydrosilicates in the various preparations have a definite influence on their reducibility. This can be clearly seen from Fig. 3, where the degree of reduction (as determined by chemical analysis) is plotted as a function of the reduction temperature. From the reduction curves of 8272 (0.0% Si02), 8227 (6.1% Si02), 8201 (27.4% Si02), and 8281 (41.0% Si02), it is apparent that the reducibility of a compound decreases greatly with increasing quantities of silica. Moreover, the formation and improvement of hydrosilicate structures is invariably accompanied by a decreased reducibility. [Pg.249]

Methods such as nuclear magnetic resonance (NMR), electron spectroscopy for chemical analysis (ESCA), electron spin resonance (ESR), infrared (IR), and laser raman spectroscopy could be used in conjunction with rate studies to define mechanisms. Another alternative would be to use fast kinetic techniques such as pressure-jump relaxation, electric field pulse, or stopped flow (Chapter 4), where chemical kinetics are measured and mechanisms can be definitively established. [Pg.17]

The guiding principles for the selection or development of speciation procedures are similar to those recommended for other forms of chemical analysis. For example, the initial step should be careful definition of the problem, including listing of the analytical specifications (e.g. type of analysis, concentration range, potential sources of error). This step can be followed by selection of a suitable measurement procedure, nomination of a selective separation procedure (if required) and organisation of the total protocol. [Pg.11]

Unusual are measurements for which a direct link to the mole is useful. We should probably not talk about traceability in that connection, because that term is defined as a relation between measured values. An acceptable chain of measurements for compound X of established purity, containing element E that has isotope E and that would establish a link to the mole, then would take one of the following general routes the amount of substance (X)->n(E)->n( E)-> (12C) or n(X)->n(E)-> (C)-> (12C). The ratio of atomic masses m( E)lm( 12C) is also involved in the definition, but that ratio is known with a negligible uncertainty compared with the other links in the chain. Clearly, only in a few instances will laboratories attempt to execute such a chain of measurements for a link to the SI unit. Is it fear that such a difficult process is involved in every chemical analysis that has kept so many chemists from using the mole as the way to express chemical measurement values Or is it just habit and the convenience of a balance that subconsciously links amount of substance to amount of mass ... [Pg.8]

This publication is the second of three contributions on traceability in chemical analysis. The first was published in this Journal [1] and deals with the general principles, whereas the third is planned chiefly to present examples, but also to suggest implementation procedures, to assess comments from chemical groups and to introduce possible modifications of concepts and definitions [2, 3],... [Pg.12]

Previously the authors have brought into discussion principles for traceability in chemical analysis [1], In this Journal is also the first part of this contribution [2] on protocols for traceability of analytical-chemical measurements. This first part is intended mainly for specialists who develop such protocols. It deals with terminology and definitions used when describing protocols for traceability1. These terms are mostly taken from recognized literature sources [3-7], Analysts, who want to judge the applicability of an established protocol and to use it, will be familiar with most of these terms and find others self explanatory. They may, nev-... [Pg.24]

Despite its bad reputation as an analytical tool, XRF is potentially a traceable method according to the CCQM definition and could be a primary method although it was not selected as such, and won t be for a long time. In fact, it is the only microanalytical method which can at present be considered as a candidate for accurate microscopic elemental analysis. Proof of this statement follows from Monte Carlo calculations in which experimental XRF spectra can be accurately modelled starting from first principles [23], This is not an easy approach but with computing power now available it is feasible, though not worth the effort for bulk chemical analysis where other alternatives are available. [Pg.40]

Even a cursory perusal of any analytical journal must lead one to the conclusion that trace and ultratrace analyses is a domain of chemical analysis that is gaining in importance. This conclusion is corroborated not only by the feelings and opinions of analysts. According to the current IUPAC definition of the term trace component, the limit from which we can talk about trace analysis is the concentration of 100 ppm (100 pg g ) Naturally, this limit is purely conventional and is not constant. As recently as 30 years ago, trace analysis was understood to denote activities aiming to determine components at a concentration level one order of magnitude higher, that is, below 1000 ppm, or 0.1%. [Pg.501]

The existence of these different practices was not sufficient to create a discipline or subdiscipline of physical chemistry, but it showed the way. One definition of physical chemistry is that it is the application of the techniques and theories of physics to the study of chemical reactions, and the study of the interrelations of chemical and physical properties. That would mean that Faraday was a physical chemist when engaged in electrolytic researches. Other chemists devised other essentially physical instruments and applied them to chemical subjects. Robert Bunsen (1811—99) is best known today for the gas burner that bears his name, the Bunsen burner, a standard laboratory instrument. He also devised improved electrical batteries that enabled him to isolate new metals and to add to the list of elements. Bunsen and the physicist Gustav Kirchhoff (1824—87) invented a spectroscope to examine the colors of flames (see Chapter 13). They used it in chemical analysis, to detect minute quantities of elements. With it they discovered the metal cesium by the characteristic two blue lines in its spectrum and rubidium by its two red lines. We have seen how Van t Hoff and Le Bel used optical activity, the rotation of the plane of polarized light (detected by using a polarimeter) to identify optical or stereoisomers. Clearly there was a connection between physical and chemical properties. [Pg.153]


See other pages where Chemical analysis definition is mentioned: [Pg.384]    [Pg.266]    [Pg.327]    [Pg.53]    [Pg.68]    [Pg.6]    [Pg.31]    [Pg.6]    [Pg.76]    [Pg.23]    [Pg.250]    [Pg.7]    [Pg.387]    [Pg.229]    [Pg.3]    [Pg.252]    [Pg.259]    [Pg.37]    [Pg.338]    [Pg.449]    [Pg.68]    [Pg.244]    [Pg.345]    [Pg.51]    [Pg.147]   
See also in sourсe #XX -- [ Pg.516 ]




SEARCH



Analyses, definition

Chemical, definition

Definitions chemical analysis terms

© 2024 chempedia.info