Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ceramics corrosion resistance

The excellent corrosion resistance of ceramics can be gauged from the following. Household cutlery, pottery, century-old vases, and so on are made of ceramics. Corrosion resistance arises due to their chemical stability and the high covalent bonding. Often hydrofluoric acid (HF), one of the strongest chemicals, is required to etch the microstructure of engineering ceramics. [Pg.59]

SiHcon nitride (see Nitrides) is a key material for stmctural ceramic appHcations in environments of high mechanical and thermal stress such as in vehicular propulsion engines. Properties which make this material uniquely suitable are high mechanical strength at room and elevated temperatures, good oxidation and creep resistance at high temperatures, high thermal shock resistance, exceUent abrasion and corrosion resistance, low density, and, consequently, a low moment of inertia. Additionally, siHcon nitride is made from abundant raw materials. [Pg.321]

As noted, the oxidation resistance of silicon nitride ceramics depends on the type and concentration of the sintering aids. In materials designed for high temperature appHcations the specific weight gain resulting from oxidation upon a 500-h air exposure at 1200°C and 1350°C is about 1—2 g/m and 2—4 g/m, respectively. The kinetics of the oxidation process have been iavestigated (63,64) as has the corrosion resistance (65). Corrosion resistance is also dependent on material formulation and density. [Pg.323]

Liquid polyalurninum chloride is acidic and corrosive to common metals. Suitable materials for constmction of storage and handling facilities include synthetic mbber-lined steel, corrosion resistant fiber glass reinforced plastics (FRP), ceramics, tetrafluoroethylene polymer (PTFE), poly(vinyhdene fluoride) (PVDF), polyethylene, polypropylene, and poly(vinyl chloride) (PVG). Suitable shipping containers include mbber-lined tank tmcks and rail cars for bulk shipment and plastic-lined or aH-plastic dmms and tote bins for smaller quantities. Except for aluminum chlorohydrates, PAG products are shipped as hazardous substances because of their acidity. [Pg.180]

Vitahium FHS ahoy is a cobalt—chromium—molybdenum ahoy having a high modulus of elasticity. This ahoy is also a preferred material. When combiaed with a properly designed stem, the properties of this ahoy provide protection for the cement mantle by decreasing proximal cement stress. This ahoy also exhibits high yields and tensile strength, is corrosion resistant, and biocompatible. Composites used ia orthopedics include carbon—carbon, carbon—epoxy, hydroxyapatite, ceramics, etc. [Pg.190]

Materials that come in contact with wet halogens must be corrosion-resistant. Glass, ceramics, tantalum, and fiuoropolymers are suitable materials. Granite has been used in steaming-out towers. [Pg.285]

Since the formation of the chlorohydrin is accompanied by the production of an equimolar quantity of hydrogen chloride [7647-01 -OJ, the reaction solution is strongly acidic and corrosive. The first chlorohydrin reaction towers were built of stoneware or of mild steel and lined with mbber and ceramic tiles. More recently corrosion-resistant reinforced plastics have been used with good results, but operating pressures must be maintained at or near atmospheric. [Pg.74]

The membrane is usually made from one of several materials. Woven polyester or cotton, the most commonly used and least expensive material, is adequate for temperatures up to 150°C. Siatered plastic is used where a low cost, washable surface is desired. This material is temperature limited by the polymer material to about 60°C and the flow of some powders may cause a static charge build-up on the membrane that could be hazardous ia some operatioas. Wovea fiberglass fabric or porous ceramic block is used for temperatures up to about 425°C. Siatered stainless steel powder or bonded stainless mesh is used for corrosion resistance, and for temperatures up to 530 to 650°C. Additional information can be found ia the Hterature (38,39). [Pg.161]

Packed vs Plate Columns. Relative to plate towers, packed towers are more useful for multipurpose distillations, usually in small (under 0.5 m) towers or for the following specific appHcations severe corrosion environment where some corrosion-resistant materials, such as plastics, ceramics, and certain metaUics, can easily be fabricated into packing but may be difficult to fabricate into plates vacuum operation where a low pressure drop per theoretical plate is a critical requirement high (eg, above 49,000 kg/(hm ) (- 10, 000 lb/(hft )) Hquid rates foaming systems or debottlenecking plate towers having plate spacings that are relatively close, under 0.3 m. [Pg.174]

Corrosivity. Corrosivity is an important factor in the economics of distillation. Corrosion rates increase rapidly with temperature, and in distillation the separation is made at boiling temperatures. The boiling temperatures may require distillation equipment of expensive materials of constmction however, some of these corrosion-resistant materials are difficult to fabricate. For some materials, eg, ceramics (qv), random packings may be specified, and this has been a classical appHcation of packings for highly corrosive services. On the other hand, the extensive surface areas of metal packings may make these more susceptible to corrosion than plates. Again, cost may be the final arbiter (see Corrosion and corrosion control). [Pg.175]

The second approach, that of surface coating, is more difficult, and that means more expensive. But it is often worth it. Hard, corrosion resistant layers of alloys rich in tungsten, cobalt, chromium or nickel can be sprayed onto surfaces, but a refinishing process is almost always necessary to restore the dimensional tolerances. Hard ceramic coatings such as AbO, Cr203, TiC, or TiN can be deposited by plasma methods and these not only give wear resistance but resistance to oxidation and... [Pg.248]

Ceramics High E, CTy Low kjj Stiff (E = 200 GPo) Very high yield, hardness a > 3 GPo) High MP (Tm = 2000°C) Corrosion resistant Moderate density Very low toughness (kj = 2 MPa m ) T-shock (AT = 200°C) Formobility —> powder methods... [Pg.289]

Corrosion resistance it is critical to select construction materials such that neither the gas and solute nor the scrubbing liquid will corrode the packing materials. Ceramic and plastic materials, are commonly selected for this reason. [Pg.268]

Epoxy resin cements are specifically intended for resistance to caustic alkalis and organic solvents, but they also have fair acid resistance. They have excellent bond strength to other materials including ceramic and concrete. The corrosion resistances of the cements described above are given in Table 3.40. [Pg.104]

Boron nitride is one of the most outstanding corrosion-resistant materials. It is inert to gasoline, benzene, alcohol, acetone, chlorinated hydrocarbons and other organic solvents. It is not wetted by molten aluminum, copper, cadmium, iron, antimony, bismuth, silicon, germanium, nor by many molten salts and glasses. It is used extensively as crucible material, particularly for molten metals, glasses and ceramic processing. [Pg.442]

Ceramic composites, which use ceramic fiber or whisker reinforcement in a ceramic matrix, are less susceptible to brittle failure since the reinforcement intercepts, deflects and slows crack propagation. At the same time, the load is transferred from the matrix to the fibers to be distributed more uniformly. These ceramic composites are characterized by low density, generally good thermal stability, and corrosion resistance. [Pg.481]


See other pages where Ceramics corrosion resistance is mentioned: [Pg.317]    [Pg.318]    [Pg.320]    [Pg.320]    [Pg.322]    [Pg.326]    [Pg.447]    [Pg.80]    [Pg.437]    [Pg.134]    [Pg.235]    [Pg.242]    [Pg.173]    [Pg.40]    [Pg.337]    [Pg.337]    [Pg.116]    [Pg.8]    [Pg.463]    [Pg.313]    [Pg.313]    [Pg.317]    [Pg.173]    [Pg.174]    [Pg.127]    [Pg.168]    [Pg.280]    [Pg.443]    [Pg.961]    [Pg.883]    [Pg.893]    [Pg.575]    [Pg.168]    [Pg.637]   
See also in sourсe #XX -- [ Pg.257 , Pg.258 , Pg.259 , Pg.260 , Pg.261 , Pg.262 , Pg.263 , Pg.264 , Pg.267 ]




SEARCH



Ceramics resistivity

Corrosion resistance

© 2024 chempedia.info