Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Central axon

Afferent neurons lie predominantly in the PNS (see Figure 6.1). Each has a sensory receptor activated by a particular type of stimulus, a cell body located adjacent to the spinal cord, and an axon. The peripheral axon extends from the receptor to the cell body and the central axon continues from the cell body into the spinal cord. Efferent neurons also lie predominantly in the PNS. In this case, the cell bodies are found in the CNS in the spinal cord or brainstem and the axons extend out into the periphery of the body where they innervate the effector tissues. By way of convergence, the centrally located cell bodies may receive inputs from several different regions of the brain that will influence their activity. [Pg.46]

Afferent neurons that transmit sensory information toward the spinal cord are referred to as first-order sensory neurons. The cell bodies of these neurons are found in the dorsal root ganglia. These ganglia form a swelling in each of the dorsal roots just outside the spinal cord. The portion of the axon between the distal receptor and the cell body is referred to as the peripheral axon and the portion of the axon between the cell body and the axon terminal within the CNS is referred to as the central axon. [Pg.67]

Central nervous system effects predominate in acute exposures at massive doses, whereas peripheral neuropathy is more common with lower doses.After cessation of exposure to acrylamide, most cases recover, although the course of improvement can extend over months to years and depends on the severity of exposure. Because peripheral neurons can regenerate and central axons cannot, severely affected individuals may still experience residual ataxia, distal weakness, reflex loss, or sensory disturbance. [Pg.25]

Noebe/s I think the latter is correct, because myelin basic protein is actually present in oligodendrocytes centrally and Schwann cells peripherally. But in the shiverer mouse, Schwann cell myelination of peripheral nerves is relatively unaffected by the same genetic lesion that prevents formation of the central white matter. The protein must either play a different role in those two cell types, or they signal to axons in different ways. Whether it is there or not, if you irritate a ghal ceh, the oligodendrocyte will say one thing to a central axon and the Schwann cells may say something different to a peripheral axon. [Pg.122]

The connectin gene (see Section 5.2.3) has recently been found to be expressed strongly in longitudinal glial cells in the CNS of the Drosophila embryo, at the time when pioneering central axons are exploring their surfaces (Meadows et al.,... [Pg.34]

Briggs, K.K., Johansen, K.M. and Johansen, J. (1993) Selective pathway choice of a single central axonal fascicle by a subset of peripheral neurons during leech development. Dev. Biol. 158 380-389. [Pg.38]

In humans, the hypothalamic-derived protein and the hormone noncovalent complexes are packaged in neurosecretory granules, then migrate along axons at a rate of 1 4 mm/h until they reach the posterior pituitary where they are stored prior to release into the bloodstream by exocytosis (67). Considerable evidence suggests that posterior pituitary hormones function as neurotransmitters (68) vasopressin acts on the anterior pituitary to release adrenocorticotropic hormone [9002-60-2] (ACTH) (69) as well as on traditional target tissues such as kidneys. Both hormones promote other important central nervous system (CNS) effects (9,70). [Pg.191]

Mode of Motion. The cyclodienes, like lindane and toxaphene, affect the nerve axon produciag hyperactivity, convulsions, prostration, and death. The biochemical lesion is the competitive inhibition of the y-aminobutyric acid (GABA) neurotransmitter binding site of the nerve axon. Spray workers with lengthy exposure to dieldrin have suffered from prolonged and repeated central nervous system disturbances produciag epileptiform coavulsioas. Similar disturbances occurred ia workers heavily exposed to chlordecoae. [Pg.278]

DAT is predominantly expressed by dopaminergic brain neurons, NET by noradrenergic neurons in the central and peripheral nervous system, and SERT is restricted to the axons of serotonergic neurons, which originate in the raphe nuclei and innervate numerous higher brain regions therefore SERT is widely distributed in the brain. Outside the brain, 5HT transport can be measured on non-neuronal cells (e.g. platelets, lympho-blastoid cells and smooth muscle cells) most of the 5HT appearing in the circulation is taken up by platelets. [Pg.839]

The nigrostriatal tract is one of the four main dopaminergic pathways in the central nervous system. About 75% of the dopamine in the brain occurs in the nigrostriatal pathway with its cell bodies in the substantia nigra, whose axons project in the corpus striatum. Degeneration of the dopaminergic neurons in the nigrostriatal system results in Parkinsons disease. [Pg.855]

Microtubules (MT) are the largest of the cytoskeletal filaments with an outer diameter of about 25 nm, a wall thickness of about 5 nm, and a central lumen measuring about 15 nm. They consist of tubulin and associated proteins. Vertebrate brain tissue is a rich source of extractable tubulin because of the large numbers of microtubules that are present in axons and dendrites. Tubulin obtained from such a natural source is a heterodimer of 100 kD composed of a-tubulin and P-tubulin. Brain a-tubulin is a globular polypeptide that contains 451 amino acid residues, whereas P-tubulin, which is somewhat shorter, is made up of 445 amino acid residues. These two molecular species of tubulin share in common 40% of their amino acid residues. [Pg.4]

It was generally assumed that it cannot and this became known as Dale s Law. During his studies on antidromic vasodilation he wrote (1935) When we are dealing with two different endings of the same sensory neuron, the one peripheral and concerned with vasodilation and the other at a central synapse, can we suppose that the discovery and identification of a chemical transmitter at axon reflex dilation would furnish a hint as to the nature of the transmission process at a central synapse. The possibility has at least some value as a stimulus to further experiments . [Pg.11]

The large diameter A/l-afferent fibre enters the dorsal horn of the spinal cord through the medial division of the dorsal root. It then descends through the medial region of lamina I or II, or alternatively, curves around the medial (central) edge of the dorsal horn down to the ventral horn. On reaching deeper laminae, laminae IV and V, the AjS-fibres ascend back up into laminae III and IV where they repeatedly subdivide and form a characteristic termination pattern. The densest arborisation appears to occur in lamina III. Axons originating from specialised muscle stretch receptors have collaterals that pass ventrally to make monosynaptic connections with neurons of laminae V, VI and VII. Some also extend to laminae VIII and IX of the ventral horn where they synapse directly onto motor neurons and form the basis of monosynaptic reflexes. [Pg.455]

Bjorklund, A Nobin, A and Steveni, U. Regeneration of central serotonin neurons after axonal degeneration induced by 5,6-dihydroxytryptamine. Brain Res 50 214-220, 1973. [Pg.220]

In that and subsequent studies (Kosofsky 1985 Blue et al. 1988a), a distinct laminar pattern of innervation was found in somatosensory cortex, and a quite different pattern in the cingulate cortex, hippocampus, and dentate gyrus, where there are distinct bands of highly varicose axons. In the primate, the 5-HT innervation of cerebral cortex is denser and more highly differentiated among different architectonic and functional areas (Kosofsky et al. 1984 Morrison et al. 1982 Morrison and Foote 1986 Wilson and Molliver 1986 Wilson et al. 1989). For example, marked differences in the density and distribution of 5-HT axons are found in the macaque on either side of the central sulcus, in primary motor and somatosensory cortex while... [Pg.272]

The differential vulnerability of fine and beaded 5-HT axons, combined with evidence from anterograde transport that fine and beaded fibers arise from the DR and MR nuclei, respectively, led to the proposal that axons from the DR nucleus are selectively vulnerable to the neurotoxic effects of psychotropic amphetamines, while the MR projection is resistant. The prior anterograde transport study (Kosofsky 1985 Kosofsky and Molliver 1987) sampled a relatively small number of neurons in the central portions of the DR and MR nuclei and suggested a predominantly differential origin of the two axon types. In order to determine directly whether the DR and MR projections are differentially sensitive to psychotropic amphetamines,... [Pg.287]

Central/Tertiary structures The fish olfactory bulb is a fourlayered structure much as in higher vertebrates. Within the 2nd layer, the first synapse for olfactory input is on the dendrites of the mitral cells (MC). About 1000 ORN axons converge on one MC, a ratio similar to mammals. The MC output, from cells at various levels, leads into several glomeruli and receives (inhibitory) input from granule cells. The latter also innervate a distinct cell type in the MC layer of teleosts — the ruffed cells (RC), with which they have reciprocal synapses [Fig. 2.18(a)] both relay cells send ascending fibres to forebrain centres (Kosaka and Hama, 1982). The RC are unlike the MC since they are not stimulated by the ORNs directly. Their interactions (Chap. 5) may contribute to the processing of pheromonal stimuli (Zippel, 2000). The main bulbar pathways project to several nuclei in the forebrain via two ipsilateral tracts, the lateral and medial [Fig. 2.18(b)], the latter mediates sexual behaviour and the former probably other behaviours (Hara,... [Pg.21]


See other pages where Central axon is mentioned: [Pg.520]    [Pg.927]    [Pg.58]    [Pg.252]    [Pg.115]    [Pg.115]    [Pg.11]    [Pg.196]    [Pg.520]    [Pg.927]    [Pg.58]    [Pg.252]    [Pg.115]    [Pg.115]    [Pg.11]    [Pg.196]    [Pg.78]    [Pg.74]    [Pg.139]    [Pg.645]    [Pg.701]    [Pg.77]    [Pg.143]    [Pg.161]    [Pg.188]    [Pg.192]    [Pg.208]    [Pg.215]    [Pg.253]    [Pg.295]    [Pg.393]    [Pg.211]    [Pg.269]    [Pg.575]    [Pg.277]    [Pg.294]    [Pg.295]    [Pg.146]    [Pg.40]    [Pg.78]   
See also in sourсe #XX -- [ Pg.67 ]




SEARCH



Axonal

Axons 371

Axons, central nervous system

Central nervous system elongated axons

© 2024 chempedia.info