Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cements zinc oxide

Zinc Oxide—Eugenol Cements. Zinc oxide—eugenol cements have many uses in dentistry. The admixture of powdered zinc oxide [1314-13-2] and Hquid eugenol [97-33-OJ, fotins a bland, easily mixed paste having exceUent working time but slow-setting characteristics. [Pg.474]

Zinc oxide cements. Zinc oxide, stirred with zinc chloride solution, hardens in a few minutes to a stonelike mass. Dental cement (obtainable from dental supply houses) also belongs to the class of zinc oxide cements it consists of a solid and a liquid conqjonent and after trituration hardens in a few minutes. The fact that the volxime remains constant on hardening is especially advantageous. [Pg.31]

Another chelate cement, zinc oxide-eugenol has been suggested as a treatment for exposed and inflamed pulp [61]. However, its use has been reported to canse adverse biological responses, including chronic inflammation and eventnal necrosis of the pulp [67,68]. As a result, its use is no longer recommended for direct application to the pnlp. However, its application with a calcinm hydroxide system as the means of retaining the calcium hydroxide remains widely nsed and is recommended. [Pg.31]

In paints, zinc oxide serves as a mildewstat and acid buffer as well as a pigment. The oxide also is a starting material for many zinc chemicals. The oxide supphes zinc in animal feeds and is a fertilizer supplement used in zinc-deficient soils. Its chemical action in cosmetics (qv) and dmgs is varied and complex but, based upon its fungicidal activity, it promotes wound healing. It is also essential in nutrition. Zinc oxide is used to prepare dental cements in combination with eugenol and phosphoric and poly(acrylic acid)s (48) (see Dental materials). [Pg.423]

The compositions of zinc oxide—eugenol impression pastes are similar to those of the zinc oxide—eugenol cements (86). Variations in specific characteristics are achieved by the proportions of the ingredients (87). Properties vary in commercial products (88). The modifications of the zinc oxide—eugenol system intended for bite-registration pastes may include agents to increase the body or thixotropic character of the unset mix to improve... [Pg.474]

Calcium Chelates (Salicylates). Several successhil dental cements which use the formation of a calcium chelate system (96) were developed based on the reaction of calcium hydroxide [1305-62-0] and various phenohc esters of sahcyhc acid [69-72-7]. The calcium sahcylate [824-35-1] system offers certain advantages over the more widely used zinc oxide—eugenol system. These products are completely bland, antibacterial (97), facihtate the formation of reparative dentin, and do not retard the free-radical polymerization reaction of acryhc monomer systems. The principal deficiencies of this type of cement are its relatively high solubihty, relatively low strength, and low modulus. Less soluble and higher strength calcium-based cements based on dimer and trimer acid have been reported (82). [Pg.475]

In the 1870s more effective liquid cement-formers were found ortho-phosphoric acid and eugenol (Wilson, 1978). It was also found that an aluminosilicate glass could replace zinc oxide, a discovery which led to the first translucent cement. Thereafter the subject stagnated until the late 1960s when the polyelectrolyte cements were discovered by Smith (1968) and Wilson Kent (1971). [Pg.2]

The Arrhenius definition is not suitable for AB cements for several reasons. It cannot be applied to zinc oxide eugenol cements, for these are non-aqueous, nor to the metal oxychloride and oxysulphate cements, where the acid component is not a protonic acid. Indeed, the theory is, strictly speaking, not applicable at all to AB cements where the base is not a water-soluble hydroxide but either an insoluble oxide or a silicate. [Pg.15]

The precise structural role played by the water molecules in these cements is not clear. In the zinc oxychloride cement, water is known to be thermally labile. The 1 1 2 phase will lose half of its constituent water at about 230 °C, and the 4 1 5 phase will lose water at approximately 160 C to yield a mixture of zinc oxide and the 1 1 2 phase. Water clearly occurs in these cements as discrete molecules, which presumably coordinate to the metal ions in the cements in the way described previously. However, the possible complexities of structure for these systems, which may include chlorine atoms in bridging positions between pairs of metal atoms, make it impossible to suggest with any degree of confidence which chemical species or what structural units are likely to be present in such cements. One is left with the rather inadequate chemical descriptions of the phases used in even the relatively recent original literature on these materials, from which no clear information on the role of water can be deduced. [Pg.51]

The polyelectrolyte cements are modern materials that have adhesive properties and are formed by the cement-forming reaction between a poly(alkenoic acid), typically poly(acrylic acid), PAA, in concentrated aqueous solution, and a cation-releasing base. The base may be a metal oxide, in particular zinc oxide, a silicate mineral or an aluminosilicate glass. The presence of a polyacid in these cements gives them the valuable property of adhesion. The structures of some poly(alkenoic acid)s are shown in Figure 5.1. [Pg.90]

In their original form these cements came as a zinc oxide powder and a concentrated solution of poly(acrylic acid) (Wilson, 1975b). Since then they have been subject to a number of chemical modifications. [Pg.103]

Two methods are available for the preparation of the powder (Smith, 1969). In one, zinc oxide is ignited at 900 to 1000 °C for 12 to 24 hours until activity is reduced to the desired level. This oxide powder is yellow, presumably because zinc is in excess of that required for stoichiometry. Alternatively, a blend of zinc oxide and magnesium oxide in the ratio of 9 1 is heated for 8 to 12 hours to form a sintered mass. This mass is ground and reheated for another 8 to 12 hours. The powder is white. Altogether the powder is similar to that used in zinc phosphate cements. [Pg.104]

The cement sets as the result of an acid-base reaction between a zinc oxide dental powder and a poly(alkenoic acid). The pH increases and an insoluble amorphous salt is formed which acts as the cement matrix. A general account of the gelation processes is given in Section 5.4. [Pg.105]

Scanning electron microscopy shows the cement to consist of zinc oxide particles embedded in an amorphous matrix (Smith, 1982a). As with the zinc phosphate cement, a separate globular water phase exists since the cement becomes uniformly porous on dehydration. Porosity diminishes as the water content is decreased. Wilson, Paddon Crisp (1979) distinguish between two types of water in dental cements non-evaporable (tightly bound) and evaporable (loosely bound). They found, in the example they examined, that the ratio of tightly bound to loosely bound water was 0-22 1-0, the lowest for all dental cements. They considered that loosely bound water acted as a plasticizer and weakened the cement. [Pg.106]

Unlike other aqueous dental cements, the zinc polycarboxylate retains plastic characteristics even when aged and shows significant stress relaxation after four weeks (Paddon Wilson, 1976). It creeps under static load. Wilson Lewis (1980) found that the 24-hour creep value for one cement, under a load of 4-6 MPa, was 0-7 % in 24 hours, which was more than that of a zinc phosphate cement (0-13 %) and a glass-ionomer cement (0-32%), but far less than that of the zinc oxide eugenol cement (2-2%). [Pg.109]

Attempts have been made to improve the mechanical properties of these cements by adding reinforcing fillers (Lawrence Smith, 1973 Brown Combe, 1973 Barton et al, 1975). Lawrence Smith (1973) examined alumina, stainless steel fibre, zinc silicate and zinc phosphate. The most effective filler was found to be alumina powder. When added to zinc oxide powder in a 3 2 ratio, compressive strength was increased by 80 % and tensile strength by 100 % (cements were mixed at a powder/liquid ratio of 2 1). Because of the dilution of the zinc oxide, setting time (at 37 °C) was increased by about 100%. As far as is known, this invention has not been exploited commercially. [Pg.113]

There is bound to be one problem with resin glass polyalkenoate cement. Because the matrix is a mixture of hydrogel salt and polymer, lightscattering is bound to be greater than in the conventional material. Moreover, the zinc oxide-containing glass of class II materials is bound to be opaque. This makes it difficult to formulate a translucent material and is the reason why their use is restricted to that of a liner or base. However, the class II material cited will be radio-opaque because it uses strontium and zinc, rather than calcium, in the glass. [Pg.175]

Wilson, A. D. (1975b). Zinc oxide dental cements. In von Fraunhofer, J. A. (ed.) Scientific Aspects of Dental Materials, Chapter 5. London and Boston Butterworths. [Pg.194]

Zinc phosphate cement, as its name implies, is composed principally of zinc and phosphate. It is formed by mixing a powder, which is mainly zinc oxide, with a solution based on phosphoric acid. However, it is not as simple chemically as it appears because satisfactory cements caimot be formed by simply mixing zinc oxide with phosphoric acid solution. [Pg.204]

The early history of the material is obscure. According to Palmer (1891) it goes back to 1832, but this statement has never been corroborated. Rostaing (1878) patented a series of pyrophosphate cements which could include Zn, Mg, Cd, Ba and Ca. Rollins (1879) described a cement formed from zinc oxide and syrupy phosphoric acid. In the same paper he mentions zinc phosphate cements recently introduced by Fletcher and Weston. Similar information is given in a discussion of the Pennsylvania... [Pg.204]

Later, better cements appeared based on c. 50% solutions of orthophosphoric acid. But even these were far from satisfactory. As always with dental cements, the problems revolved around the control of the setting reaction the reaction between zinc oxide and orthophosphoric acid was found to be far too fierce. By the time of Fleck s 1902 paper these problems had been solved. The importance of densifying and deactivating the zinc oxide powder to moderate the cement reaction had been recognized. Of equal importance was the realization that satisfactory cements could be produced only if aluminium was incorporated into the orthophosphoric acid solution. The basic science underlying this empirical finding was elucidated only in the 1970s. [Pg.205]

The chief problem with these cements, as with many AB cements, is to moderate the cement-forming reaction. If the reaction is over-vigorous then a crystalline mass rather than a cement is formed (Komrska Satava, 1970 Crisp et al., 1978). Therefore, the zinc oxide used in these cements... [Pg.205]

Magnesium oxide is always blended with the zinc oxide prior to ignition. Magnesium oxide promotes densification of the zinc oxide, preserves its whiteness and renders the sintered powder easier to pulverize (Crowell, 1929). The sintered mixed oxide has been shown to contain zinc oxide and a solid solution of zinc oxide in magnesium oxide (Zhuravlev, Volfson Sheveleva, 1950). Specific surface area is reduced compared with that of pure zinc oxide and cements prepared from the mixed oxides are stronger (Crowell, 1929 Zhuravlev, Volfson Sheveleva, 1950). [Pg.206]

Early workers, and some later ones, ignored the fact that aluminium is always found in the orthophosphoric acid liquid of the practical cement its presence profoundly affects the course of the cement-forming reaction. It affects crystallinity and phase composition, and renders deductions based on phase diagrams inappropriate. Nevertheless we first describe the simple reaction between zinc oxide and pure orthophosphoric acid solution, which was the system studied by the earliest workers. [Pg.207]

These simple zinc oxide-orthophosphoric add cements are very weak indeed, it may be that they are just weakly-bonded aggregates of... [Pg.208]

Komrska Satava (1970) showed that these accounts apply only to the reaction between pure zinc oxide and phosphoric acid. They found that the setting reaction was profoundly modified by the presence of aluminium ions. Crystallite formation was inhibited and the cement set to an amorphous mass. Only later (7 to 14 days) did XRD analysis reveal that the mass had crystallized directly to hopeite. Servais Cartz (1971) and Cartz, Servais Rossi (1972) confirmed the importance of aluminium. In its absence they found that the reaction produced a mass of hopeite crystallites with little mechanical strength. In its presence an amorphous matrix was formed. The amorphous matrix was stable, it did not crystallize in the bulk and hopeite crystals only grew from its surface under moist conditions. Thus, the picture grew of a surface matrix with some tendency for surface crystallization. [Pg.209]


See other pages where Cements zinc oxide is mentioned: [Pg.474]    [Pg.474]    [Pg.474]    [Pg.474]    [Pg.474]    [Pg.474]    [Pg.475]    [Pg.475]    [Pg.475]    [Pg.475]    [Pg.494]    [Pg.2]    [Pg.6]    [Pg.103]    [Pg.104]    [Pg.104]    [Pg.105]    [Pg.110]    [Pg.112]    [Pg.167]    [Pg.208]    [Pg.209]   
See also in sourсe #XX -- [ Pg.31 ]




SEARCH



Other zinc oxide cements

Zinc oxide eugenol (ZOE) cements

Zinc oxide eugenol cement

© 2024 chempedia.info