Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cathodic protection potential difference

Cathodic protection of different materials in installations of dissimilar metals is only possible if the protection potential ranges of the individual materials overlap. Section 2.4 gives information on the protection potential ranges of various systems. If there is no overlapping, then insulating couplings must be installed. This is also appropriate and even necessary if the protection current densities are very different. [Pg.304]

Cladding is another form of cathodic protection. A difference in potential of at least 100 mV can be found between certain wrought aluminium alloys. This makes cathodic protection of a core alloy possible by cladding with a more electronegative alloy (Table B.5.2). [Pg.197]

The basic standard for cathodic protection was laid down for the first time in DIN 30676 to which all the application areas of the different branches of protection can be referred. In this the most important point is the technique for accurately measuring the object/soil potential [58]. The usual off-potential measurement method for underground installations has been slowly implemented and enforced in Europe since the 1960s [59]. [Pg.19]

In the cathodic protection of storage tanks, potentials should be measured in at least three places, i.e., at each end and at the top of the cover [16]. Widely different polarized areas arise due to the small distance which is normally the case between the impressed current anodes and the tank. Since such tanks are often buried under asphalt, it is recommended that permanent reference electrodes or fixed measuring points (plastic tubes under valve boxes) be installed. These should be located in areas not easily accessible to the cathodic protection current, for example between two tanks or between the tank wall and foundations. Since storage tanks usually have several anodes located near the tank, equalizing currents can flow between the differently loaded anodes on switching off the protection system and thus falsify the potential measurement. In such cases the anodes should be separated. [Pg.100]

The variation in the on and off potentials or the potential difference along the pipeline will usually indicate faults that prevent the attainment of complete cathodic protection. The protection current requirement of the pipeline may be estimated from experience if the age and type of pipeline is known (see Fig. 5-3). Figure 3-20 shows the variation in the on and off potentials of a 9-km pipeline section DN 800 with 10-mm wall thickness. At the end of the pipeline, at 31.84 km, an insulating unit is built in. The cathodic protection station is situated at 22.99 km. Between this and the end of the pipeline there are four pipe current measuring points. The applied protection current densities and coating resistances of individual pipeline sections are calculated from Eqs. (3-40) and (3-41). In the upper diagram the values of... [Pg.119]

A particular type of anodic danger arises in the interiors of pipes and storage tanks that are filled with an electrolyte and consist of similar or different metals, which, however, are electrically separated by insulating units. Potential differences are produced from external cathodic protection and are active in the interior [29,30]. These processes are dealt with in more detail in Sections 10.3.5,20.1.4, and 24.4.6. [Pg.150]

As in the case of corrosion at the insulating connection due to different potentials caused by cathodic protection of the pipeline, there is a danger if the insulating connection is fitted between two sections of a pipeline with different materials, e.g., mild and stainless steel. The difference between the external pipe/soil potential is changed by cell currents so that the difference between the internal pipe/ medium potential has the same value, i.e., both potential differences become equal. If the latter is lower than the former for the case of free corrosion, the part of the pipe with the material that has the more positive rest potential in the soil is polarized anodically on the inner surface. The danger increases with external cathodic protection in the part of the pipeline made of mild steel. [Pg.282]

Different microstructural regions in a material which has an almost uniform composition can also lead to the formation of corrosion cells (e.g., in the vicinity of welds). Basically, corrosion cells can be successfully overcome by cathodic protection. However, in practice, care has to be taken to avoid electrical shielding by large current-consuming cathode surfaces by keeping the area as small as possible. In general, with mixed installations of different metals, it must be remembered that the protection potentials and the protection range depend on the materials (Section 2.4). This can restrict the use of cathodic protection or make special potential control necessary. [Pg.395]

Figure 20-9 shows the negative effect of uninsulated heating elements on corrosion protection. In a 250-liter tank, an electric tube heating element with a 0.05-m surface area was screwed into the upper third without electrical separation, and in the lower third a tinned copper tube heat exchanger with a 0.61 -m surface area was built in. The Cu heat exchanger was short-circuited for measurements, as required. For cathodic protection, a potential-controlled protection system with impressed current anodes was installed between the two heating elements. The measurements were carried out with two different samples of water with different conductivities. [Pg.454]

The action of different balancing resistors can be seen in Fig. 20-11. The enamelled water heater had an electrically isolated heating element of stainless steel with a 2.5 m surface area. With R = 600 Q, the tank can no longer be cathodically protected at / = 800 D, on the other hand, all is well [13]. The potential of the... [Pg.455]

Galvanic corrosion is the enhanced corrosion of one metal by contact with a more noble metal. The two metals require only being in electrical contact with each other and exposing to the same electrolyte environment. By virtue of the potential difference that exists between the two metals, a current flows between them, as in the case of copper and zinc in a Daniell cell. This current dissolves the more reactive metal (zinc in this case), simultaneously reducing the corrosion rate of the less reactive metal. This principle is exploited in the cathodic protection (Section 53.7.2) of steel structures by the sacrificial loss of aluminum or zinc anodes. [Pg.893]

The situation will of course be different if the potential is maintained constant, e.g. in cathodic protection. For example, if the potential was maintained constant at, say, E , in an oxygen-free solution the rate due to the h.e.r. would be rq which would be unaffected if the solution was then aerated. However, since the corrosion rate would then increase, the current required to maintain the potential constant would have to be increased. [Pg.104]

The modern procedure to minimise corrosion losses on underground structures is to use protective coatings between the metal and soil and to apply cathodic protection to the metal structure (see Chapter 11). In this situation, soils influence the operation in a somewhat different manner than is the case with unprotected bare metal. A soil with moderately high salts content (low resistivity) is desirable for the location of the anodes. If the impressed potential is from a sacrificial metal, the effective potential and current available will depend upon soil properties such as pH, soluble salts and moisture present. When rectifiers are used as the source of the cathodic potential, soils of low electrical resistance are desirable for the location of the anode beds. A protective coating free from holidays and of uniformly high insulation value causes the electrical conducting properties of the soil to become of less significance in relation to corrosion rates (Section 15.8). [Pg.385]

The proof of protection is more difficult to establish in this case for two reasons. First, the object is to restore passivity to the rebar and not to render it virtually immune to corrosion. Second, it is difficult to measure the true electrode potential of rebars under these conditions. This is because the cathodic-protection current flowing through the concrete produces a voltage error in the measurements made (see below). For this reason it has been found convenient to use a potential decay technique to assess protection rather than a direct potential measurement. Thus a 100 mV decay of polarisation in 4 h once current has been interrupted has been adopted as the criterion for adequate protection. It will be seen that this proposal does not differ substantially from the decay criterion included in Table 10.3 and recommended by NACE for assessing the full protection of steel in other environments. Of course, in this case the cathodic polarisation is intended to inhibit pit growth and restore passivity, not to establish effective immunity. [Pg.123]

It is clear that to ensure adequate protection of a structure under cathodic protection it is necessary to measure its electrode potential. This can only be achieved by using a reference electrode placed in the same environment as the structure and measuring the e.m.f. of the cell so formed. Since the electrode potentials of different types of reference electrode vary, it is clear that the measured e.m.f. will also vary according to the particular reference electrode used. It follows that the potential measured must always be recorded with respect to the reference electrode deployed, which must always be stated. [Pg.123]

When two different metals are immersed in the same electrolyte solution they will usually exhibit different electrode potentials. If they are then connected by an electronic conductor there will be a tendency for the potentials of the two metals to move towards one another they are said to mutually polarise. The polarisation will be accompanied by a flow of ionic current through the solution from the more negative metal (the anode) to the more positive metal (the cathode), and electrons will be transferred through the conductor from the anode to the cathode. Thus the cathode will benefit from the supply of electrons, in that it will dissolve at a reduced rate. It is said to be cathodically protected . Conversely, in supplying electrons to the cathode the anode will be consumed more rapidly, and thus will act as a sacrificial anode. [Pg.135]

A further difference is that in anodic protection the corrosion rate (passivation current density) will always be finite, whereas ideally a completely cathodically protected metal should not corrode at all. Raising the potential... [Pg.261]

The determination of polarisation curves of metals by means of constant potential devices has contributed greatly to the knowledge of corrosion processes and passivity. In addition to the use of the potentiostat in studying a variety of mechanisms involved in corrosion and passivity, it has been applied to alloy development, since it is an important tool in the accelerated testing of corrosion resistance. Dissolution under controlled potentials can also be a precise method for metallographic etching or in studies of the selective corrosion of various phases. The technique can be used for establishing optimum conditions of anodic and cathodic protection. Two of the more recent papers have touched on limitations in its application and differences between potentiostatic tests and exposure to chemical solutions. ... [Pg.1107]

When such a polyfunctional electrode is polarized, the net current, i, will be given by ii - 4. When the potential is made more negative, the rate of cathodic hydrogen evolution will increase (Fig. 13.2b, point B), and the rate of anodic metal dissolution will decrease (point B ). This effect is known as cathodic protection of the metal. At potentials more negative than the metaTs equilibrium potential, its dissolution ceases completely. When the potential is made more positive, the rate of anodic dissolution will increase (point D). However, at the same time the rate of cathodic hydrogen evolution will decrease (point D ), and the rate of spontaneous metal dissolution (the share of anodic dissolution not associated with the net current but with hydrogen evolution) will also decrease. This phenomenon is known as the difference effect. [Pg.238]


See other pages where Cathodic protection potential difference is mentioned: [Pg.2731]    [Pg.169]    [Pg.89]    [Pg.2731]    [Pg.419]    [Pg.281]    [Pg.162]    [Pg.234]    [Pg.295]    [Pg.63]    [Pg.131]    [Pg.258]    [Pg.259]    [Pg.280]    [Pg.310]    [Pg.355]    [Pg.357]    [Pg.422]    [Pg.455]    [Pg.179]    [Pg.1199]    [Pg.1251]    [Pg.77]    [Pg.118]    [Pg.124]    [Pg.130]    [Pg.138]    [Pg.215]    [Pg.421]    [Pg.91]   
See also in sourсe #XX -- [ Pg.271 ]




SEARCH



Cathode potential

Cathodic protection

Cathodic protection potential)

Cathodically protective

Difference potential

Potential protection

© 2024 chempedia.info