Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Partial oxidation products

Emissions from methanol vehicles are expected to produce lower HC and CO emissions than equivalent gasoline engines. However, methanol combustion produces significant amounts of formaldehyde (qv), a partial oxidation product of methanol. Eormaldehyde is classified as an air toxic and its emissions should be minimized. Eormaldehyde is also very reactive in the atmosphere and contributes to the formation of ozone. Emissions of NO may also pose a problem, especiaHy if the engine mns lean, a regime in which the standard three-way catalyst is not effective for NO reduction. [Pg.195]

Residuals Produced Typical residuals resulting from oxidation are partial oxidation products (e.g., chlorinated organics) and inorganic salts (e.g., NaCl, Mn02). Additional treatment may be required to permit disposal. [Pg.147]

Partial oxidations over complex mixed metal oxides are far from ideal for singlecrystal like studies of catalyst structure and reaction mechanisms, although several detailed (and by no means unreasonable) catalytic cycles have been postulated. Successful catalysts are believed to have surfaces that react selectively vith adsorbed organic reactants at positions where oxygen of only limited reactivity is present. This results in the desired partially oxidized products and a reduced catalytic site, exposing oxygen deficiencies. Such sites are reoxidized by oxygen from the bulk that is supplied by gas-phase O2 activated at remote sites. [Pg.374]

The quantitative analyses of reaction products due to partial or complete oxidation can be performed by different methods. This type of determination is essential to improve electrode composition. Apart from a decrease in the Coulombic efficiency (see Section 11.2), the formation of partially oxidized products can be deleterious for the DMFC application because some of these products (e.g., formic acid) may be in liquid form and are corrosive. [Pg.75]

Quantitative analysis can be carried out by chromatography (in gas or liquid phase) during prolonged electrolysis of methanol. The main product is carbon dioxide,which is the only desirable oxidation product in the DMFC. However, small amounts of formic acid and formaldehyde have been detected, mainly on pure platinum electrodes. The concentrations of partially oxidized products can be lowered by using platinum-based alloy electrocatalysts for instance, the concentration of carbon dioxide increases significantly with R-Ru and Pt-Ru-Sn electrodes, which thus shows a more complete reaction with alloy electrocatalysts. [Pg.75]

We have summarized below recent results concerning spectroscopic / flow reactor investigations of hydrocarbons partial and total oxidation on different transition metal oxide catalysts. The aim of this study is to have more information on the mechanisms of the catalytic activity of transition metal oxides, to better establish selective and total oxidation ways at the catalyst surface, and to search for partial oxidation products from light alkane conversion. [Pg.483]

Micro heat exchangers and also any kind of micro channel devices, heated or cooled externally, offer considerably improved heat transfer owing to their large internal specific surface areas. Hence they offer unique possibilities to steer oxidations to increased selectivity of the partial-oxidation products. [Pg.291]

It is well established that the main products of ethanol electro-oxidation on Pt in acidic media are acetaldehyde and acetic acid, partial oxidation products that do not require C—C bond breaking, with their relative yields depending on the experimental conditions [Iwasita and Pastor, 1994]. Apart from the loss of efficiency associated with the partial oxidation, acetic acid is also unwanted, as it constitutes a catalyst poison. [Pg.192]

A simplified scheme of the dual pathway electrochemical methanol oxidation on Pt resulting from recent advances in the understanding of the reaction mechanism [Cao et al., 2005 Housmans et al, 2006] is shown in Fig. 15.10. The term dual pathway encompasses two reaction routes one ( indirect ) occurring via the intermediate formation of COads. and the other ( direct ) proceeding through partial oxidation products such as formaldehyde. [Pg.546]

All effluents must be characterized in detail when treating agents contaminated with metals from disassembled chemical weapons (i.e., potential trace species and reaction by-products, such as nitrated hydrocarbons, partially oxidized products, and metals, must be identified) and their environmental impacts evaluated. [Pg.88]

Fuel cells o fer important advantages as a power source, such as the potential for high efficiency, clean exhaust gases and quiet operation. In addition, the direct methanol fuel cell offers special benefits as a power source for transportation, such as potential high energy density, no need for a fuel reformer and a quick response. These advantages, however, have not been fully realized yet. One of the problems is the poor performance of the fiiel electrode. Even platimun, which seems the most active single element for methanol oxidation in add media, loses its electrocatalytic activity rapidly by the accumulation of adsorbed partially oxidized products. [Pg.6]

One example of membrane reactors is oxidation, in which oxygen from one phase diffuses from one side of an oxygen-permeable membrane to react with a fuel on the other side of the membrane. This avoids a high concentration of O2 on the fuel side, which would be flammable. A catalyst on the fuel side of the membrane oxidizes the fuel to partial oxidation products. One important process using a membrane reactor is the reaction to oxidize methane to form syngas,... [Pg.485]

In the investigation of hydrocarbon partial oxidation reactions the study of the factors that determine selectivity has been of paramount importance. In the past thirty years considerable work relevant to this topic has been carried out. However, there is yet no unified hypothesis to address this problem. In this paper we suggest that the primary reaction pathway in redox type reactions on oxides is determined by the structure of the adsorbed intermediate. When the hydrocarbon intermediate (R) is bonded through a metal oxygen bond (M-O-R) partial oxidation products are likely, but when the intermediate is bonded through a direct metal-carbon bond (M-R) total oxidation products are favored. Results on two redox systems are presented ethane oxidation on vanadium oxide and propylene oxidation on molybdenum oxide. [Pg.16]

The reactivity of the supported vanadium oxide catalysts for other oxidation reactions also show similar trends as the oxide support is varied from titania to silica [13]. The activity and selectivity for partial oxidation products of vanadium oxide supported on titania being higher than vanadium oxide supported on silica. The oxidation activity of the supported vanadium oxide catalysts is related to the ability to donate oxygen to form the required oxidation products. The... [Pg.35]

Catalytic Activity. The world-wide interest focused in the catalytic partial oxidation of methane to formaldehyde has led to a great variety of conflicting results (9), The main reason of such discrepancies lies in the lack of a generally valid rule for evaluating and comparing the proposed catalytic systems. In effect, this reaction involves a very complex pathway since the desired partial oxidation product, HCHO, exhibits a limited thermal stability at T>4(X)°C and can be oxidized to more easily than CH itself. Hence, a suitable reactor device and appropriate operating conditions result to be of fundamental importance in order to attain reliable data unaffected by experimental artefacts. [Pg.46]

Much recent research (7-5) has been devoted to converting methane to products that are more easily transported and more valuable. Such more valuable products include higher hydrocarbons and the partial oxidation products of methane which are formed by either direct routes such as oxidative coupling reactions or indirect methods via synthesis gas as an intermediate. The topic of syngas formation by oxidation of CH4 has been considered primarily from an engineering perspective (7-5). Most fundamental studies of the direct oxidation of CH4 have dealt with the CH4 + O2 reaction system in excess O2 and at lower temperatures (6-10). [Pg.416]

The short residence times used in these tests have allowed us to study this direct oxidation independent of the reforming and shift reactions. By optimizing the selectivity of direct formation of the partial oxidation products, the relatively long residence times required for steam reforming of the unreacted CH4 can be reduced, requiring less catalyst and a much smaller reactor. [Pg.425]

The present study investigates a different approach. The membrane is used to allow the desired intermediate product to escape from the reaction zone before it is consumed by further reaction. This use of a membrane reactor was first suggested by Michaels [15]. The partial oxidation of methane, which is a challenging reaction of the type propos for this application of membrane reactors, has been analyzed herein. There is no thermodynamic limitation for the production of carbon dioxide and water, actually these products are favored. It is desired to remove any partial oxidation product, for example formaldehyde, before it has a chance to be further oxidized. [Pg.428]

In spite of the accumulated mechanistic investigations, it still seems difficult to explain why multicomponent bismuth molybdate catalysts show much better performances in both the oxidation and the ammoxidation of propylene and isobutylene. The catalytic activity has been increased almost 100 times compared to the simple binary oxide catalysts to result in the lowering of the reaction temperatures 60 80°C. The selectivities to the partially oxidized products have been also improved remarkably, corresponding to the improvements of the catalyst composition and reaction conditions. The reaction mechanism shown in Figs. 1 and 2 have been partly examined on the multicomponent bismuth molybdate catalysts. However, there has been no evidence to suggest different mechanisms on the multicomponent bismuth molybdate catalysts. [Pg.236]

Studying the effect of palladium as a promotor in silver catalysts, Cor-mack et al. [90] found that increasing amounts of Pd alloyed with silver drastically decreased the selectivity. No other partial oxidation products were found. [Pg.133]


See other pages where Partial oxidation products is mentioned: [Pg.369]    [Pg.69]    [Pg.227]    [Pg.227]    [Pg.20]    [Pg.225]    [Pg.450]    [Pg.402]    [Pg.403]    [Pg.237]    [Pg.386]    [Pg.610]    [Pg.131]    [Pg.193]    [Pg.131]    [Pg.24]    [Pg.345]    [Pg.365]    [Pg.425]    [Pg.15]    [Pg.21]    [Pg.21]    [Pg.33]    [Pg.263]    [Pg.83]    [Pg.246]    [Pg.247]    [Pg.253]    [Pg.134]    [Pg.134]    [Pg.160]   
See also in sourсe #XX -- [ Pg.292 ]

See also in sourсe #XX -- [ Pg.300 , Pg.301 , Pg.302 , Pg.303 ]




SEARCH



Emissions partial oxidation products

Hydrogen production partial oxidation

Mineralization partial oxidation products

Oxidation partial

Partial oxidation production from

Partially oxidized

© 2024 chempedia.info