Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyst Survey

The major diastereomer seen with each of the rhodium(II) catalysts surveyed was 36a, leading to 41a (Tab. 16.7). For the TFA catalyst (entry 5) a significant proportion... [Pg.369]

Since its discovery more than 50 years ago, olefin metathesis has evolved from its origins in binary and ternary mixtures of the Ziegler-Natta type into a research area dominated by well-defined molecular catalysts. Surveys of developments up to 1993 were presented in COMC (1982) and COMC (1995). Major advances in ROMP over the last 10 years include the development of modular, stereoselective group 6 initiators, and easily handled, functional-group tolerant ruthenium initiators. The capacity to tailor polymer functionality, chain length, and microstructure has expanded applications in materials science, to the point where ROMP now constitutes one of the most powerful methods available for the molecular-level design of macromolecular materials. In addition to an excellent and comprehensive text on olefin metathesis, a three-volume handbook s has recently appeared, of which the third volume focuses specifically on applications of metathesis in polymer synthesis. [Pg.623]

In Chapter 1 mechanistic aspects of Are Diels-Alder reaction are discussed. The literature on the effects of solvents and Lewis-acid catalysts on this reaction is surveyed. The special properties of water are reviewed and the effects of water on the Diels-Alder reaction is discussed. Finally, the effect of water on Lewis acid - Lewis base interactions is described. [Pg.173]

In Chapter 6 we survey what has been accomplished and indicate directions for future research. Furthermore, we critically review the influence of water on Lewis acid - Lewis base interactions. This influence has severe implications for catalysis, in particular when hard Lewis acids and bases are involved. We conclude that claims of Lewis-acid catalysis should be accompanied by evidence for a direct interaction between catalyst and substrate. [Pg.178]

Several Pd(0) complexes are effective catalysts of a variety of reactions, and these catalytic reactions are particularly useful because they are catalytic without adding other oxidants and proceed with catalytic amounts of expensive Pd compounds. These reactions are treated in this chapter. Among many substrates used for the catalytic reactions, organic halides and allylic esters are two of the most widely used, and they undergo facile oxidative additions to Pd(0) to form complexes which have o-Pd—C bonds. These intermediate complexes undergo several different transformations. Regeneration of Pd(0) species in the final step makes the reaction catalytic. These reactions of organic halides except allylic halides are treated in Section 1 and the reactions of various allylic compounds are surveyed in Section 2. Catalytic reactions of dienes, alkynes. and alkenes are treated in other sections. These reactions offer unique methods for carbon-carbon bond formation, which are impossible by other means. [Pg.125]

PETROLEUM - REFINERY PROCESSES, SURVEY] (Vol 18) [CATALYSTS - SUPPORTED] (Vol 5)... [Pg.845]

Thermodynamically, the formation of methane is favored at low temperatures. The equilibrium constant is 10 at 300 K and is 10 ° at 1000 K (113). High temperatures and catalysts ate needed to achieve appreciable rates of carbon gasification, however. This reaction was studied in the range 820—1020 K, and it was found that nickel catalysts speed the reaction by three to four orders of magnitude (114). The Hterature for the carbon-hydrogen reaction has been surveyed (115). [Pg.417]

Survey of the patent Hterature reveals companies with processes for 1,4-butanediol from maleic anhydride include BASF (94), British Petroleum (95,96), Davy McKee (93,97), Hoechst (98), Huels (99), and Tonen (100,101). Processes for the production of y-butyrolactone have been described for operation in both the gas (102—104) and Hquid (105—108) phases. In the gas phase, direct hydrogenation of maleic anhydride in hydrogen at 245°C and 1.03 MPa gives an 88% yield of y-butyrolactone (104). Du Pont has developed a process for the production of tetrahydrofuran back-integrated to a butane feedstock (109). Slurry reactor catalysts containing palladium and rhenium are used to hydrogenate aqueous maleic acid to tetrahydrofuran (110,111). [Pg.453]

ASTM A297 Gr. HK or A 351 HK-40, a 26 Cr-20 Ni alloy with a carbon range of 0.35 to 0.45 percent, i.s the material almost always specified for catalyst tubes. A recent API Survey indicated that for most plants the tube wall was designed on the basis of stress to produce rupture in 100,000 hours. Other design bases were 50 percent of the stress to produce rupture in 10.000 hours or 40 to 50 percent of the stress to produce one percent creep in 10,000 hours. [Pg.261]

Although acid catalysis is thought to be necessary for the Biginelli reaction, there has been a report disputing this requirement. Ranu and coworkers surveyed over 20 aldehydes and showed that excellent yields of DHPMs could be achieved at 100-105°C in 1 h in the absence of catalyst and solvent with no by-products formed. In contrast Peng and Deng reported no significant formation of DHPM 15 when a mixture of benzaldehyde (5), ethyl acetoacetate (6), and urea (3a) was heated at 100°C for 30 min. [Pg.513]

Another point for structural diversification is the sulfonamide group. Imai had already shown that a wide variety of groups could be introduced at this position to optimize the reaction. Since a wide variety of sulfonyl chlorides are commercially available, a number of different types of groups could be examined (Scheme 3.34). Testing of a variety of aryl and alkyl groups on the 1,2-cyclohexanediamine backbone demonstrates that the simple methanesulfonamide 122 is clearly superior or equal to many other analogs in the cyclopropanation of cinnamyl alcohol (Table 3.11). Another concern which was directly addressed by this survey was the question of catalyst solubility. [Pg.136]

In 1996, the first example of the catalytic enantioselective aza Diels-Alder reactions of azadienes using a chiral lanthanide catalyst was reported [4], In this article, successful examples of such catalytic reactions are surveyed. [Pg.188]

Complete data collection should be carried out weekly. Since changes in the unit are continuous, regular surveys permit distinction among the effects of feedstock, catalyst, and operating conditions. An accurate assessment of a cat cracker operation requires reliable plant data. A reasonable weight balance should have a 98% to 102% closure. [Pg.140]

The pressure balance survey indicates that neither the spent nor the regenerated catalyst standpipe is generating optimum pressure head. This is evidenced by the low catalyst densities of 20 Ib/ft (320 kg/m ) and 25.4 Ib/ft (407 kg/m ), respectively. As indicated in Chapter 8, several factors can cause low pressure, including under or over ... [Pg.175]

The heat balance exercise provides a tool for in-depth analysis of the unit operation. Heat balance surveys determine catalyst circulation rate, delta coke, and heat of reaction. The procedures described in this chapter can be easily programmed into a spreadsheet program to calculate the balances on a routine basis. [Pg.181]

The pressure balance provides an insight into the hydraulics of catalyst circulation. Performing pressure balance surveys will help the unit engineer identify pinch points. It will also balance two common constraints the air blower and the wet gas compressor. [Pg.181]

Conduct a single-gauge pressure survey of the reactor-regenerator circuit. Using the results, determine the catalyst density profile. [Pg.247]

Perform a single-gauge pressure survey around the feed nozzles. Calculate the hydrogen content of the spent catalyst. Conduct a... [Pg.267]

This paper surveys the field of methanation from fundamentals through commercial application. Thermodynamic data are used to predict the effects of temperature, pressure, number of equilibrium reaction stages, and feed composition on methane yield. Mechanisms and proposed kinetic equations are reviewed. These equations cannot prove any one mechanism however, they give insight on relative catalyst activity and rate-controlling steps. Derivation of kinetic equations from the temperature profile in an adiabatic flow system is illustrated. Various catalysts and their preparation are discussed. Nickel seems best nickel catalysts apparently have active sites with AF 3 kcal which accounts for observed poisoning by sulfur and steam. Carbon laydown is thermodynamically possible in a methanator, but it can be avoided kinetically by proper catalyst selection. Proposed commercial methanation systems are reviewed. [Pg.10]

In the early phases of this study, temperature surveys were run on various catalysts in order to determine the threshold temperature for CO methanation. The data in Table XVII, calculated for 0.25-in. C150-1-02 catalyst, are rather typical. [Pg.74]

Various types of unsaturated hydrocarbons have been reported to undergo metathesis reactions by contact with appropriate catalysts. A short survey is given below. It is to be expected that in the near future still more examples will be found. [Pg.133]

Solid catalysts for the metathesis reaction are mainly transition metal oxides, carbonyls, or sulfides deposited on high surface area supports (oxides and phosphates). After activation, a wide variety of solid catalysts is effective, for the metathesis of alkenes. Table I (1, 34 38) gives a survey of the more efficient catalysts which have been reported to convert propene into ethene and linear butenes. The most active ones contain rhenium, molybdenum, or tungsten. An outstanding catalyst is rhenium oxide on alumina, which is active under very mild conditions, viz. room temperature and atmospheric pressure, yielding exclusively the primary metathesis products. [Pg.136]

A short survey of information on formation, structure, and some properties of palladium and nickel hydrides (including the alloys with group IB metals) is necessary before proceeding to the discussion of the catalytic behavior of these hydrides in various reactions of hydrogen on their surface. Knowledge of these metal-hydrogen systems is certainly helpful in the appreciation, whether the effective catalyst studied is a hydride rather than a metal, and in consequence is to be treated in a different way in a discussion of its catalytic activity. [Pg.247]

Many catalysts have been screened for activity in catalytic chain transfer. A comprehensive survey is provided in Gridnev and Ittel s review."0 The best known, and to date the most effective, are the cobalt porphyrins (Section 6.2.5.2.1) and cobaloximes (Sections 6.2.5.2.2 and 6.2.5.2.3). There is considerable discrepancy in reported values of transfer constants. This in part reflects the sensitivity of the catalysts to air and reaction conditions (Section 6.2.5.3). [Pg.313]

A survey of applications was also done by Czichocki et al. [73], including such applications as inks and paints, paper, photography, plastics, emulsion polymerization, pharmaceuticals, flotation, corrosion inhibitors, lubricants, electroplating, electrophoresis, and catalysts for ethoxylation. [Pg.344]

There are, however, numerous cases where electronegative additives can act as promoters for catalytic reactions. Typical examples are the use of Cl to enhance the selectivity of Ag epoxidation catalysts and the plethora of electrochemical promotion studies utilizing O2 as the promoting ion, surveyed in Chapters 4 and 8 of this book. The use of O, O8 or O2 as a promoter on metal catalyst surfaces is a new development which surfaced after the discovery of electrochemical promotion where a solid O2 conductor interfaced with the metal catalyst acts as a constant source of promoting O8 ions under the influence of an applied voltage. Without such a constant supply of O2 onto the catalyst surface, the promoting O8 species would soon be consumed via desorption or side reactions. This is why promotion with O2 was not possible in classical promotion, i.e. before the discovery of electrochemical promotion. [Pg.31]

Most of the electrochemical promotion studies surveyed in this book have been carried out with active catalyst films deposited on solid electrolytes. These films, typically 1 to 10 pm in thickness, consist of catalyst grains (crystallites) typically 0.1 to 1 pm in diameter. Even a diameter of 0.1 pm corresponds to many (-300) atom diameters, assuming an atomic diameter of 3-10 10 m. This means that the active phase dispersion, Dc, as already discussed in Chapter 11, which expresses the fraction of the active phase atoms which are on the surface, and which for spherical particles can be approximated by ... [Pg.516]


See other pages where Catalyst Survey is mentioned: [Pg.3]    [Pg.248]    [Pg.386]    [Pg.738]    [Pg.312]    [Pg.358]    [Pg.3]    [Pg.248]    [Pg.386]    [Pg.738]    [Pg.312]    [Pg.358]    [Pg.20]    [Pg.166]    [Pg.378]    [Pg.491]    [Pg.208]    [Pg.149]    [Pg.469]    [Pg.564]    [Pg.122]    [Pg.556]    [Pg.796]    [Pg.138]    [Pg.134]    [Pg.454]    [Pg.521]    [Pg.129]   


SEARCH



Solid catalysts literature survey

Survey of Catalysts

Survey of catalyst systems

Survey of the Catalysts

© 2024 chempedia.info