Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl compounds dienes

Tamaru and Kimura have recently developed a three-component coupling reaction of carbonyl compounds, 1,3-dienes, and dimethylzinc leading to homoallylic alcohols 30 via Ni-catalyzed conjugate addition of the carbonyl compound to the 1,3-diene in a 1,4-fashion (Scheme 8.11) [44], They later showed that 1,3-dienes... [Pg.230]

Keywords Allylation Carbonyl compound Dienes Homoallylation Nickel catalysis Reductive coupling... [Pg.182]

In the past, this field has been dominated by ruthenium, rhodium and iridium catalysts with extraordinary activities and furthermore superior enantioselectivities however, some investigations were carried out with iron catalysts. Early efforts were reported on the successful use of hydridocarbonyliron complexes HFcm(CO) as reducing reagent for a, P-unsaturated carbonyl compounds, dienes and C=N double bonds, albeit complexes were used in stoichiometric amounts [7]. The first catalytic approach was presented by Marko et al. on the reduction of acetone in the presence of Fe3(CO)12 or Fe(CO)5 [8]. In this reaction, the hydrogen is delivered by water under more drastic reaction conditions (100 bar, 100 °C). Addition of NEt3 as co-catalyst was necessary to obtain reasonable yields. The authors assumed a reaction of Fe(CO)5 with hydroxide ions to yield H Fe(CO)4 with liberation of carbon dioxide since basic conditions are present and exclude the formation of molecular hydrogen via the water gas shift reaction. H Fe(CO)4 is believed to be the active catalyst, which transfers the hydride to the acceptor. The catalyst presented displayed activity in the reduction of several ketones and aldehydes (Scheme 4.1) [9]. [Pg.126]

In a similar fashion, diols and polyols can be transformed selectively to important chemicals, e. g. carbonyl compounds, dienes and cyclic ethers. Numerous reviews give adequate treatment of the dehydration both of monohydric alcohols [1-11] and of diols and polyols [12-14]. [Pg.295]

A wide range of solid catalysts can be used in the dehydration of monohydric and polyhydric alcohols. The materials active in these processes are mostly acidic in nature. Despite competing reactions various valuable products (alkenes, ethers, carbonyl compounds, dienes and cyclic ethers) can be synthesized selectively over carefully selected catalysts under appropriate reaction conditions. [Pg.304]

Diene carboxylates can be prepared by the reaction of alkenyl halides with acrylates[34]. For example, pellitorine (30) is prepared by the reaction of I-heptenyl iodide (29) with an acrylate[35]. Enol triflates are reactive pseudo-halides derived from carbonyl compounds, and are utilized extensively for novel transformations. The 3,5-dien-3-ol triflate 31 derived from a 4,5-unsaturated 3-keto steroid is converted into the triene 32 by the reaction of methyl acrylate[36]. [Pg.132]

Such copolymers of oxygen have been prepared from styrene, a-methylstyrene, indene, ketenes, butadiene, isoprene, l,l-diphen5iethylene, methyl methacrjiate, methyl acrylate, acrylonitrile, and vinyl chloride (44,66,109). 1,3-Dienes, such as butadiene, yield randomly distributed 1,2- and 1,4-copolymers. Oxygen pressure and olefin stmcture are important factors in these reactions for example, other products, eg, carbonyl compounds, epoxides, etc, can form at low oxygen pressures. Polymers possessing dialkyl peroxide moieties in the polymer backbone have also been prepared by base-catalyzed condensations of di(hydroxy-/ f2 -alkyl) peroxides with dibasic acid chlorides or bis(chloroformates) (110). [Pg.110]

The photochemical reactions of organic compounds attracted great interest in the 1960s. As a result, many useful and fascinating reactions were uncovered, and photochemistry is now an important synthetic tool in organic chemistry. A firm basis for mechanistic description of many photochemical reactions has been developed. Some of the more general types of photochemical reactions will be discussed in this chapter. In Section 13.2, the relationship of photochemical reactions to the principles of orbital symmetry will be considered. In later sections, characteristic photochemical reactions of alkenes, dienes, carbonyl compounds, and aromatic rings will be introduced. [Pg.743]

As was mentioned in Section 13.2, the [27t + 27i] photocycloaddition of alkenes is an allowed reaction according to orbital symmetry considerations. Among the most useful reactions in this categoty, from a synthetic point of view, are intramolecular [27t + 2ti] cycloadditions of dienes and intermolecular [2ti + 2ti] cycloadditions of alkenes with cyclic a, -unsaturated carbonyl compounds. These reactions will be discussed in more detail in Section 6.4 of Part B. [Pg.771]

Conjugate addition (Sections 10.10 and 18.12) Addition reaction in which the reagent adds to the termini of the conjugated system with migration of the double bond synonymous with 1,4 addition. The most common examples include conjugate addition to 1,3-dienes and to a,(3-unsaturated carbonyl compounds. [Pg.1279]

Other advances include the construction of seven- and nine-membered rings via the analogous [4-1-3] and [6-1-3] cycloadditions with dienes and trienes respectively. Heterocycles, such as tetrahydrofurans and pyrrolidines, are accessible using carbonyl compounds and imines as substrates. The following discussion is organized around these recent discoveries. It serves to illustrate the versatility and the high degree of selectivity which are some of the distinctive features of the Pd-TMM chemistry. [Pg.61]

This chapter will focus on the development of catalytic enantioselective cycloaddition reactions of carbonyl compounds with conjugated dienes (Scheme 4.1) [3]. [Pg.151]

To achieve catalytic enantioselective cycloaddition reactions of carbonyl compounds, coordination of a chiral Lewis acid to the carbonyl functionality is necessary. This coordination activates the substrate and provides the chiral environment that forces the approach of a diene to the substrate from the less sterically hindered face, introducing enantioselectivity into the reaction. [Pg.152]

The catalytic enantioselective cycloaddition reaction of carbonyl compounds with conjugated dienes has been in intensive development in recent years with the main focus on synthetic aspects the number of mechanistic studies has been limited. This chapter will focus on the development and understanding of cycloaddition reactions of carbonyl compounds with chiral Lewis acid catalysts for the preparation of optically active six-membered ring systems. [Pg.152]

The Basic Mechanisms of Cycloaddition Reactions of Carbonyl Compounds with Conjugated Dienes... [Pg.152]

The cycloaddition reactions of carbonyl compounds with conjugated dienes cannot be discussed in this context without trying to understand the reaction mechanistically. This chapter will give the basic background to the reactions whereas Chapter 8 dealing with theoretical aspects of metal-catalyzed cycloaddition reactions will give a more detailed description of this class of reactions, and others discussed in this book. [Pg.152]

For the reaction of carbonyl compounds with conjugated dienes two mechanistic pathways have generally been taken into account when Lewis acid-catalyzed reactions are considered ... [Pg.154]

There have been few mechanistic studies of Lewis acid-catalyzed cycloaddition reactions with carbonyl compounds. Danishefsky et ah, for example, concluded that the reaction of benzaldehyde 1 with trans-l-methoxy-3-(trimethylsilyloxy)-l,3-di-methyl-1,3-butadiene (Danishefsky s diene) 2 in the presence of BF3 as the catalyst proceeds via a stepwise mechanism, whereas a concerted reaction occurs when ZnCl2 or lanthanides are used as catalysts (Scheme 4.3) [7]. The evidence of a change in the diastereochemistry of the reaction is that trans-3 is the major cycloaddition product in the Bp3-catalyzed reaction, whereas cis-3 is the major product in, for example, the ZnCl2-catalyzed reaction - the latter resulting from exo addition (Scheme 4.3). [Pg.154]

The [ 2 + 4]-cycloaddition reaction of aldehydes and ketones with 1,3-dienes is a well-established synthetic procedure for the preparation of dihydropyrans which are attractive substrates for the synthesis of carbohydrates and other natural products [2]. Carbonyl compounds are usually of limited reactivity in cycloaddition reactions with dienes, because only electron-deficient carbonyl groups, as in glyoxy-lates, chloral, ketomalonate, 1,2,3-triketones, and related compounds, react with dienes which have electron-donating groups. The use of Lewis acids as catalysts for cycloaddition reactions of carbonyl compounds has, however, led to a new era for this class of reactions in synthetic organic chemistry. In particular, the application of chiral Lewis acid catalysts has provided new opportunities for enantioselec-tive cycloadditions of carbonyl compounds. [Pg.156]

The mechanism of the cycloaddition reaction of benzaldehyde 2a with Danishefsky s diene 3a catalyzed by aluminum complexes has been investigated theoretically using semi-empirical calculations [14]. It was found that the reaction proceeds as a step-wise cycloaddition reaction with the first step being a nucleophilic-like attack of Danishefsky s diene 2a on the coordinated carbonyl compound leading to an aldol-like intermediate which is stabilized by interaction of the cation with the oxygen atom of the Lewis acid. The next step is the ring-closure step, giving the cycloaddition product. [Pg.159]

Chiral boron(III) Lewis acid catalysts have also been used for enantioselective cycloaddition reactions of carbonyl compounds [17]. The chiral acyloxylborane catalysts 9a-9d, which are also efficient catalysts for asymmetric Diels-Alder reactions [17, 18], can also catalyze highly enantioselective cycloaddition reactions of aldehydes with activated dienes. The arylboron catalysts 9b-9c which are air- and moisture-stable have been shown by Yamamoto et al. to induce excellent chiral induction in the cycloaddition reaction between, e.g., benzaldehyde and Danishefsky s dienes such as 2b with up to 95% yield and 97% ee of the cycloaddition product CIS-3b (Scheme 4.9) [17]. [Pg.159]

Chiral salen chromium and cobalt complexes have been shown by Jacobsen et al. to catalyze an enantioselective cycloaddition reaction of carbonyl compounds with dienes [22]. The cycloaddition reaction of different aldehydes 1 containing aromatic, aliphatic, and conjugated substituents with Danishefsky s diene 2a catalyzed by the chiral salen-chromium(III) complexes 14a,b proceeds in up to 98% yield and with moderate to high ee (Scheme 4.14). It was found that the presence of oven-dried powdered 4 A molecular sieves led to increased yield and enantioselectivity. The lowest ee (62% ee, catalyst 14b) was obtained for hexanal and the highest (93% ee, catalyst 14a) was obtained for cyclohexyl aldehyde. The mechanism of the cycloaddition reaction was investigated in terms of a traditional cycloaddition, or formation of the cycloaddition product via a Mukaiyama aldol-reaction path. In the presence of the chiral salen-chromium(III) catalyst system NMR spectroscopy of the crude reaction mixture of the reaction of benzaldehyde with Danishefsky s diene revealed the exclusive presence of the cycloaddition-pathway product. The Mukaiyama aldol condensation product was prepared independently and subjected to the conditions of the chiral salen-chromium(III)-catalyzed reactions. No detectable cycloaddition product could be observed. These results point towards a [2-i-4]-cydoaddition mechanism. [Pg.162]

The major developments of catalytic enantioselective cycloaddition reactions of carbonyl compounds with conjugated dienes have been presented. A variety of chiral catalysts is available for the different types of carbonyl compound. For unactivated aldehydes chiral catalysts such as BINOL-aluminum(III), BINOL-tita-nium(IV), acyloxylborane(III), and tridentate Schiff base chromium(III) complexes can catalyze highly diastereo- and enantioselective cycloaddition reactions. The mechanism of these reactions can be a stepwise pathway via a Mukaiyama aldol intermediate or a concerted mechanism. For a-dicarbonyl compounds, which can coordinate to the chiral catalyst in a bidentate fashion, the chiral BOX-copper(II)... [Pg.182]

The mechanism for the hetero-Diels-Alder reaction of benzaldehyde 9 with the very reactive diene, Danishefsky s diene 10, catalyzed by aluminum complexes has been investigated from a theoretical point of view using semi-empirical calculations [27]. The focus in this investigation was to address the question if the reaction proceeds directly to the hetero-Diels-Alder adduct 11, or if 11 is formed via a Mukaiyama aldol intermediate (Scheme 8.4) (see the chapter dealing with hetero-Diels-Alder reactions of carbonyl compounds). [Pg.316]

The nitro-dldolredcdon between nitrodlkdnes and carbonyl compounds to yieldfi-nitro alcohols was discovered in 1895 by Henry. Since dien, diis reaction has been used extensively in many important syndieses. In view of its significance, diere are several reviews on die Henry reaction." These reviews cover syndiesis of fi-nitro alcohols and dieir applications in organic synthesis. The most comprehensive review is Ref 3, which summarizes the literature before 1970. More recent reviews are Refs. 4 and 5, which summarize literatures on the Henry reaction published until 1990. [Pg.30]

Methyl-7-(trimethylsilyl)oxepin and 4-methyl-4//-l,2,4-triazole-3,5-dione as dienophile undergo a Diels-Alder reaction in which the 4,6-diene structure of the seven-membered ring react. Contrary to the aforementioned reactions, the primary adduct 12 is stable and does not rearrange to a carbonyl compound.222... [Pg.50]

Lewis-acid-catalyzed cycloadditions of dienophiles, such as a,/l-unsaturated carbonyl compounds, with open-chain carbon-dienes, are generally highly ortho-para regioselective because the oxygen complexation increases the difference of LUMO coefficients of the alkene moiety. [Pg.23]

Keywords carbonyl compounds, chiral dienophiles, chiral dienes, chiral catalysts, intramolecular cycloadditions, chiral Lewis acids... [Pg.312]

The use of chiral bis(oxazoline) copper catalysts has also been often reported as an efficient and economic way to perform asymmetric hetero-Diels-Alder reactions of carbonyl compounds and imines with conjugated dienes [81], with the main focus on the application of this methodology towards the preparation of biologically valuable synthons [82]. Only some representative examples are listed below. For example, the copper complex 54 (Scheme 26) has been successfully involved in the catalytic hetero Diels-Alder reaction of a substituted cyclohexadiene with ethyl glyoxylate [83], a key step in the total synthesis of (i )-dihydroactinidiolide (Scheme 30). [Pg.118]

The diacetal 629, prepared from the carbonyl compound and O-silylated allylic alcohols in the presence of TMSOTf 20, reacts with ( )-l-trimethylsilyl-2,4-penta-diene 630, in the presence of TMSOTf 20 in CH2CI2 at -78°C, to afford 60% 631 this undergoes Diels-Alder-cyclization at 170 °C in toluene to give a substituted... [Pg.112]

Biphilic Reactions with Dienes or Carbonyl Compounds. Stereochemical details have appeared of the reactions between substituted 1,3-dienes and halogenophosphines, such as dichloromethylphosphine (21a) and dibromo-phenylphosphine (21b). In general, both cis- and /ra/i5-adducts are formed, and they are not interconvertible via quinquecovalent intermediates. The conversion of these adducts to A -phospholens or to A -phospholen-l-oxides produces cis-trans mixtures. [Pg.44]

A number of methods are available for following the oxidative behaviour of food samples. The consumption of oxygen and the ESR detection of radicals, either directly or indirectly by spin trapping, can be used to follow the initial steps during oxidation (Andersen and Skibsted, 2002). The formation of primary oxidation products, such as hydroperoxides and conjugated dienes, and secondary oxidation products (carbohydrides, carbonyl compounds and acids) in the case of lipid oxidation, can be quantified by several standard chemical and physical analytical methods (Armstrong, 1998 Horwitz, 2000). [Pg.331]

As discussed in Section 10.4 of Part A, concerted suprafacial [2tt + 2tt] cycloadditions are forbidden by orbital symmetry rules. Two types of [2 + 2] cycloadditions are of synthetic value addition reactions of ketenes and photochemical additions. The latter group includes reactions of alkenes, dienes, enones, and carbonyl compounds, and these additions are discussed in the sections that follow. [Pg.538]


See other pages where Carbonyl compounds dienes is mentioned: [Pg.5]    [Pg.138]    [Pg.160]    [Pg.151]    [Pg.153]    [Pg.183]    [Pg.315]    [Pg.339]    [Pg.146]    [Pg.155]    [Pg.1296]    [Pg.121]    [Pg.1039]    [Pg.1238]    [Pg.26]    [Pg.32]   
See also in sourсe #XX -- [ Pg.175 ]

See also in sourсe #XX -- [ Pg.175 ]




SEARCH



1,3-Diene compounds

Carbonyl compounds homoallylation, 1,3-Dienes

Carbonyl compounds, 1,3-dienes hetero-Diels-Alder

Dienes into carbonyl compounds

Unsaturated carbonyl compounds 1.4- Diene-3-ones

© 2024 chempedia.info