Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Early efforts

A highly readable account of early efforts to apply the independent-particle approximation to problems of organic chemistry. Although more accurate computational methods have since been developed for treating all of the problems discussed in the text, its discussion of approximate Hartree-Fock (semiempirical) methods and their accuracy is still useful. Moreover, the view supplied about what was understood and what was not understood in physical organic chemistry three decades ago is... [Pg.52]

J0rgensen P and Simons J 1981 Second Quantization Based Methods in Quantum Chemistry (New York Academic) The very early efforts on these methods are introduced in ... [Pg.2200]

High Pressure in the Chemical Industry. The use of high pressure in industry may be traced to early efforts to Hquefy the so-called permanent gases using a combination of pressure and low temperature. At about the same time the chemical industry was becoming involved in high pressure processes. The discovery of mauveine in 1856 led to the development of the synthetic dye industry which was well estabUshed, particularly in Germany, by the end of the century. Some of the intermediate compounds required for the production of dyes were produced, in autoclaves, at pressures of 5-8 MPa (725-1160 psi). [Pg.76]

Early efforts to produce synthetic mbber coupled bulk polymerization with subsequent emulsification (9). Problems controlling the heat generated during bulk polymerization led to the first attempts at emulsion polymerization. In emulsion polymerization hydrophobic monomers are added to water, emulsified by a surfactant into small particles, and polymerized using a water-soluble initiator. The result is a coUoidal suspension of fine particles,... [Pg.23]

Acetylcholine Precursors. Early efforts to treat dementia using cholinomimetics focused on choline [62-49-7] (12) supplement therapy (Fig. 3). This therapy, analogous to L-dopa [59-92-7] therapy for Parkinson s disease, is based on the hypothesis that increasing the levels of choline in the brain bolsters acetylcholine (ACh) synthesis and thereby reverses deficits in cholinergic function. In addition, because choline is a precursor of phosphatidylcholine as well as ACh, its supplementation may be neuroprotective in conditions of choline deficit (104). [Pg.96]

Early efforts to develop molecular models emphasized ways of representing three-dimensional aspects in two-dimensional projections. Some of the problems addressed were the folding of macromolecules (43,44) and two-dimensional projections with hidden surfaces (45,46). The state of the art in the early 1970s has been reviewed (47). [Pg.63]

Early efforts to prepare metal soaps involved attempts to dissolve the natural materials in oils. By the latter part of the nineteenth century, substantial progress had been made in the preparation of fused resinates and linoleates of lead and manganese. The utiUty of cobalt as a drying catalyst was discovered close to the turn of the century, but the factors that led to its ultimate discovery are not recorded. [Pg.217]

The synthesis of dextromethorphan is an outgrowth of early efforts to synthesize the morphine skeleton. /V-Methy1morphinan(40) was synthesized in 1946 (58,59). The 3-hydroxyl and the 3-methoxy analogues were prepared by the same method. Whereas the natural alkaloids of opium are optically active, ie, only one optical isomer can be isolated, synthetic routes to the morphine skeleton provide racemic mixtures, ie, both optical isomers, which can be separated, tested, and compared pharmacologically. In the case of 3-methoxy-/V-methylmorphinan, the levorotatory isomer levorphanol [77-07-6] (levorphan) was found to possess both analgesic and antitussive activity whereas the dextrorotatory isomer, dextromethorphan (39), possessed only antitussive activity. Dextromethorphan, unlike most narcotics, does not depress ciUary activity, secretion of respiratory tract fluid, or respiration. [Pg.523]

The cyclooligomerization of ethylene oxide to yield dioxane as well as compounds we now call crowns predates Pedersen s discovery by more than a decade ". The full utility of these cyclic oligomers was not recognized, however, and the patent reporting these early efforts remains an interesting historical footnote. The promise of utilizing cyclo-oligomerization commercially is so important, however, that attention is called to the method and the existence of the patent. [Pg.8]

Early efforts to partially synthesize 20-keto and 17a-hydroxy-20-keto steroids led to ring D-expanded products isomeric with the desired compounds. Darzens condensation of 3/5-hydroxyandrost-5-en-17-one acetate (75) with ethyl a,a-dichloropropionate, followed by alkali treatment and decarboxylation, gives both the expected 3j5-hydroxypregn-5-en-20-one (78) and an isomer now known to be 17a-methyl-D-homo-17-ketone (79).36,37a alternative route for the introduction of the two carbon side chain, Ruzicka... [Pg.382]

Early efforts to effect the photoinduced ring expansion of aryl azides to 3H-azepines in the presence of other nucleophiles met with only limited success. For example, irradiation of phenyl azide in hydrogen sulfide-diethyl ether, or in methanol, gave 17/-azepine-2(3//)-thione35 (5% mp 106—107 " O and 2-methoxy-3//-azepine (11 %),2 3 respectively. Later workers194 failed to reproduce this latter result, but found that in strongly basic media (3 M potassium hydroxide in methanol/dioxane) and in the presence of 18-crown-6, 17/-azepin-2(3//)-one was produced in 48% yield. In the absence of the crown ether the yield of azepinone falls to 35%. [Pg.153]

This section will provide details of recent efforts to polymerize phosphaalkenes. It will begin with an introduction to the factors that must be considered when attempting to polymerize P=C bonds. In addition, a historical context will be provided since, perhaps ironically, it was so-called polymerization reactions that plagued early efforts to prepare compounds possessing heavier element multiple bonds. Finally, it will close with the first successful polymerization of a P=C bond to give poly(methylenephosphine)s. [Pg.113]

An early effort using this approach in Guinea-pigs reported variable results — attributable to incomplete nerve sectioning (Planel, 1953). Sectioning procedures may also produce some unwanted effects as intracranial nerve section will remove part of the animal s N. terminalis sensory capability (Devitsina and Cherova, 1992). [Pg.111]

Direct aromatic substitution of unactivated aryl halides is slow and generally requires a catalyst to become a useful synthetic method. Copper reagents have been used in some cases in classical procedures for the formation of products from aromatic substitution. In many cases these copper-mediated reactions occur at high temperatures and are substrate dependent. Since the 1970s, transition metal catalysts have been developed for aromatic substitution. Most of the early effort toward developing metal-catalyzed aromatic substitution focused on the formation of... [Pg.369]

Freerks, R. 2003. Early efforts to upgrade Fischer-Tropsch reaction products into fuels, lubricants and useful materials. Paper presented at the AIChE Spring National Meeting, New Orleans, 86d. [Pg.361]

The classical Friedel-Crafts approach toward attaching a phosphorus site directly to an aromatic ring would seem a promising route. Phosphorus-centered acid halides would be anticipated to participate in electrophilic aromatic substitution much in the manner of ordinary acyl halides. Early efforts confirmed this concept.48-52 However, difficulties have been encountered in the use of the classical conditions,53 and modifications to the approach have been necessary. [Pg.172]


See other pages where Early efforts is mentioned: [Pg.303]    [Pg.59]    [Pg.253]    [Pg.261]    [Pg.323]    [Pg.5]    [Pg.64]    [Pg.401]    [Pg.7]    [Pg.219]    [Pg.482]    [Pg.493]    [Pg.647]    [Pg.322]    [Pg.127]    [Pg.38]    [Pg.348]    [Pg.114]    [Pg.2]    [Pg.11]    [Pg.27]    [Pg.519]    [Pg.419]    [Pg.3]    [Pg.396]    [Pg.154]    [Pg.300]    [Pg.315]    [Pg.185]    [Pg.537]    [Pg.98]    [Pg.135]    [Pg.139]    [Pg.426]    [Pg.785]   
See also in sourсe #XX -- [ Pg.162 ]




SEARCH



Effort

© 2024 chempedia.info