Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon polycondensations

In the more distant future, some other synthetic processes will be applied to TPEs, such as the carbon-carbon polycondensations catalyzed by metal derivatives [193,194] or the use of enzymatic catalysis in organic media [195]. The bacterial polymers are of great interest as organic materials, such as the poly(3-hydroxyalkanoates), which are potential thermoplastic elastomers. The... [Pg.20]

Over the past few years, new routes were proposed to prepare block copolymers, such as the carbon-carbon polycondensations catalyzed by metal derivatives... [Pg.65]

Phosgene addition is continued until all the phenoHc groups are converted to carbonate functionahties. Some hydrolysis of phosgene to sodium carbonate occurs incidentally. When the reaction is complete, the methylene chloride solution of polymer is washed first with acid to remove residual base and amine, then with water. To complete the process, the aqueous sodium chloride stream can be reclaimed in a chlor-alkah plant, ultimately regenerating phosgene. Many variations of this polycarbonate process have been patented, including use of many different types of catalysts, continuous or semicontinuous processes, methods which rely on formation of bischloroformate oligomers followed by polycondensation, etc. [Pg.283]

Nucleophilic Substitution Route. Commercial synthesis of poly(arylethersulfone)s is accompHshed almost exclusively via the nucleophilic substitution polycondensation route. This synthesis route, discovered at Union Carbide in the early 1960s (3,4), involves reaction of the bisphenol of choice with 4,4 -dichlorodiphenylsulfone in a dipolar aprotic solvent in the presence of an alkaUbase. Examples of dipolar aprotic solvents include A/-methyl-2-pyrrohdinone (NMP), dimethyl acetamide (DMAc), sulfolane, and dimethyl sulfoxide (DMSO). Examples of suitable bases are sodium hydroxide, potassium hydroxide, and potassium carbonate. In the case of polysulfone (PSE) synthesis, the reaction is a two-step process in which the dialkah metal salt of bisphenol A (1) is first formed in situ from bisphenol A [80-05-7] by reaction with the base (eg, two molar equivalents of NaOH),... [Pg.460]

An alternative synthesis route for PES involves the partial hydrolysis of dichlorodiphenyl sulfone (2) with base to produce 4-chloro-4 -hydroxydiphenylsulfone [7402-67-7] (3) followed by the polycondensation of this difimctional monomer in the presence of potassium hydroxide or potassium carbonate (7). [Pg.462]

Recently, various polyesters such as poly(ethylene adipate), poly(tetramethylene adipate), poly(caprolac-tone), and poly(aliphatic carbonate), having terminal hydroxyl groups, were reacted with ACPC to give corresponding macroazoesters and their thermal behaviors were observed by DSC [14]. The block copolymers of these polycondensation polymers with addition polymers such as PSt and PMMA were synthesized [14]. [Pg.757]

Note-. Bisphenol-A and the diaryl esters of terephthalic acid and isophthalic acid are nonvolatile compounds, so that any excess of these components cannot completely be removed, resulting in a low-molar-mass, unusable polyester. Moreover, excess bisphenol-A causes a strong discoloration of the polyester melt due to thermal degradation at the high reaction temperature used. This can be avoided if the diaryl esters are mixed with 5 mol% of diphenyl carbonate. Any excess of this compound can easily be removed in vacuum at the polycondensation temperature. [Pg.112]

Experiment with addition of diphenyl carbonate Diphenyl terephthalate, 31.8 g (0.1 mol), 28.62 g (0.09 mol) of diphenyl isophthalate, and 2.37 g (0.011 mol) of diphenyl carbonate are polycondensed with 45.6 g (0.2 mol) of 2,2-bis(4-hydroxyphenyl)propane (bisphenol-A) under the preceding conditions. A slighdy brownish, extremely tough, noncrystalline polyester is obtained with an inherent viscosity equal to 0.56 dL/g. The softening point of the polyester is equal to 200°C and the melting range is 215-285°C. [Pg.112]

See also PBT degradation structure and properties of, 44-46 synthesis of, 106, 191 Polycaprolactam (PCA), 530, 541 Poly(e-caprolactone) (CAPA, PCL), 28, 42, 86. See also PCL degradation OH-terminated, 98-99 Polycaprolactones, 213 Poly(carbo[dimethyl]silane)s, 450, 451 Polycarbonate glycols, 207 Polycarbonate-polysulfone block copolymer, 360 Polycarbonates, 213 chemical structure of, 5 Polycarbosilanes, 450-456 Poly(chlorocarbosilanes), 454 Polycondensations, 57, 100 Poly(l,4-cyclohexylenedimethylene terephthalate) (PCT), 25 Polydimethyl siloxanes, 4 Poly(dioxanone) (PDO), 27 Poly (4,4 -dipheny lpheny lpho sphine oxide) (PAPO), 347 Polydispersity, 57 Polydispersity index, 444 Poly(D-lactic acid) (PDLA), 41 Poly(DL-lactic acid) (PDLLA), 42 Polyester amides, 18 Polyester-based networks, 58-60 Polyester carbonates, 18 Polyester-ether block copolymers, 20 Polyester-ethers, 26... [Pg.595]

Tough, transparent, heat and flame resistant, multiblock (bisphenol fluorenone carbonate) (BPF)-dimethylsiloxane copolymers have been synthesized by interfacial polycondensation of phosgene with various mixtures of BPF end-capped siloxane oligomers and free BPF or its monosodium salt 232). Siloxane content of the copolymers were varied between 7 and 27%. Presence of two Tg s, one below —100 °C and the other as high as 275 °C, showed the formation of two-phase morphologies. [Pg.38]

Quaternary oxalkylated polycondensates can be prepared by esterification of an oxalkylated primary fatty amine with a dicarbonic acid. An organometallic titanium compound is used as a catalyst for condensation [842]. The reaction product is then oxalkylated in the presence of a carbon acid [841], These polycondensates can be used as demulsifiers for crude oil emulsions and as corrosion inhibitors in installations for the production of natural gas and crude oil they can and also be used in processing. [Pg.342]

Lipase CA catalyzed the polymerization of cyclic dicarbonates, cyclobis (hexamethylene carbonate) and cyclobis(diethylene glycol carbonate) to give the corresponding polycarbonates [105]. The enzymatic copolymerization of cyclobis(diethylene glycol carbonate) with DDL produced a random ester-carbonate copolymer. As to enzymatic synthesis of polycarbonates, reported were polycondensations of 1,3-propanediol divinyl dicarbonate with 1,3-propanediol [110], and of diphenyl carbonate with bisphenol-A [111]. [Pg.255]

Tamon H, Ishizaka H, Mikami M, Okazaki M. Porous structure of organic and carbone aerogels synthesized by sol-gel polycondensation of resorcinol with formaldehyde. Carbon 1997 35 791-6... [Pg.434]

They also synthesized polymeric iniferters containing the disulfide moiety in the main chain [149,150]. As shown in Eq. (30),polyphosphonamide,which was prepared by the polycondensation reaction of phenyl phosphoric dichloride with piperadine, was allowed to react with carbon disulfide in the presence of triethylamine, followed by oxidative coupling to yield the polymeric iniferter 32. These polymeric iniferters were used for the synthesis of block copolymers with St or MMA, with the composition and block lengths controlled by the ratio of the concentration of the polymeric iniferter to the monomer or by conversion. The block copolymers of polyphosphonamide with poly(St) or poly(MMA) were found to have improved flame resistance characteristics. [Pg.93]

Aromatic polycarbonates are currently manufactured either by the interfacial polycondensation of the sodium salt of diphenols such as bisphenol A with phosgene (Reaction 1, Scheme 22) or by transesterification of diphenyl carbonate (DPC) with diphenols in the presence of homogeneous catalysts (Reaction 2, Scheme 22). DPC is made by the oxidative carbonylation of dimethyl carbonate. If DPC can be made from cyclic carbonates by transesterification with solid catalysts, then an environmentally friendlier route to polycarbonates using C02 (instead of COCl2/CO) can be established. Transesterifications are catalyzed by a variety of materials K2C03, KOH, Mg-containing smectites, and oxides supported on silica (250). Recently, Ma et al. (251) reported the transesterification of dimethyl oxalate with phenol catalyzed by Sn-TS-1 samples calcined at various temperatures. The activity was related to the weak Lewis acidity of Sn-TS-1 (251). [Pg.130]

Polycondensation reactions of 2 with diphenols were carried out in DMAc at 160°C using an excess of potassium carbonate to yield viscous solutions ofthe desired poly(aryl ether ketone)s. Judging by the viscosity increase, the polymerization reaction was near completion after only about 8h at 160°C. Aqueous... [Pg.119]

Bisphenol-AF-derived poly(carbonate) (2) has been synthesized by the two-phase transfer-catalyzed polycondensation of Bisphenol AF (1) with trichloromethyl chloroformate (TCF) in organic-solvent-aqueous-alkaline solution systems with a variety of quaternary ammonium salts at room temperature (Scheme l).6... [Pg.128]

Polycondensation of Bisphenols, II, with Phosgene. Polycondensation of siloxane-linked bisphenols, II, with phosgene is the most obvious synthetic approach leading to siloxane-modified poly(arylene carbonates) since the phosgene-bisphenol polycondensation is used in the synthesis of aromatic polycarbonates (1). This method was used initially to prepare polymer (as indicated in reaction 1) as well as for the attempted synthesis of polymers 2 and 5 ... [Pg.459]

In addition, polymers containing an odd number of silicon atoms in the siloxanylene segment can be prepared by this approach. However, reaction conditions employed in condensation of bis-silanols, III, with diaminosilanes (41) or siloxazanes (42) led to the cleavage of the carbonate group. Consequently, the recently reported silanol-acetoxysilane polycondensation reaction (43) was investigated for the polycondensation of bis-silanols, III, with diacetoxysilanes or diacetoxydisiloxanes (reaction 3). [Pg.462]

It was found that the reaction conditions which were optimized for the synthesis of poly(arylene siloxanylenes) (43) could be employed for the synthesis of siloxane-modified poly-(arylene carbonates). 2,4,6-Trimethylpyridine (collidine) was selected as the most suitable of all catalysts investigated (43) for the synthesis of the siloxane modified poly(arylene carbonates). Properties of polymers prepared by this method are given in Table I. In comparision to the phosgene-catalyzed homo-polycondensation of bis-silanols, III, the inherent viscosities... [Pg.462]

Polycarbonates are polyesters resulting from the polycondensation of carbonic anhydride (furnished by phosgene) and a bisphenol. [Pg.437]

The condensation polymerization process, employed recently by Skourlis et al. (1993) and Duvis et al. (1993), involves immersion of carbon fibers in a solution containing hexamethylenediamine and sodium carbonate. Dried carbon fibers are then immersed in a dipolychloride solution in carbon tetrachloride where the interfacial polycondensation reaction takes place. The result is that a thin layer of polyamide (nylon 6,6) coating is deposited on the continuous carbon fiber, whose thickness is controlled though by varying the diamine concentration. [Pg.295]

The polymerization of enantiomerically pure monomers presents no relevant stereochemical problems when the asymmetric carbon atom is not involved in the reaction and no new centers of stereoisomerism are formed. This is the case, for example, in polycondensation of chiral diacids with diamines (274) and in ring-opening polymerization of substituted lactams (275) and A -carboxyanhy-drides of a-amino acids (276). Interest here lies mainly in the properties of the polymer. Accidental racemization may sometimes occur but is not necessarily related to the mechanism of polymerization. [Pg.72]


See other pages where Carbon polycondensations is mentioned: [Pg.22]    [Pg.22]    [Pg.2]    [Pg.260]    [Pg.1050]    [Pg.607]    [Pg.7]    [Pg.310]    [Pg.44]    [Pg.218]    [Pg.210]    [Pg.100]    [Pg.188]    [Pg.900]    [Pg.53]    [Pg.65]    [Pg.186]    [Pg.188]    [Pg.128]    [Pg.569]    [Pg.52]    [Pg.183]    [Pg.128]    [Pg.255]    [Pg.261]   
See also in sourсe #XX -- [ Pg.255 ]




SEARCH



Carbon from polycondensation

© 2024 chempedia.info